Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://r.donnu.edu.ua/handle/123456789/2861
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorПоловенко, Людмила Петрівна-
dc.contributor.authorМерінова, Світлана Володимирівна-
dc.date.accessioned2023-05-15T09:04:57Z-
dc.date.available2023-05-15T09:04:57Z-
dc.date.issued2022-
dc.identifier.otherУДК 004.777(045)-
dc.identifier.otherhttps://doi.org/10.52058/2708-7530-2022-5(23)-273-284-
dc.identifier.urihttps://r.donnu.edu.ua/handle/123456789/2861-
dc.descriptionСтаття у журналі "Наукові перспективи": 2022. No 5(22). С. 273-284en_US
dc.description.abstractThe rapid increase in the size, volume, diversity and speed of geospatial data leads to the availability of spatial data infrastructures and compatible services, As a result we face the necessity of the knowledge extraction from bulk data. The production of knowledge by different intellectual analysis methods of distributed data in the spatial database remains a critical issue. The article presents the most common technologies of data mining. The authors review the process of knowledge discovery in databases and consider the data mining technologies as one of the component of this process. In the article we analyse the technologies of data mining as the basis of web mining technology. The categories of Web Mining: analysis of the use of web resources; extraction of web structures; web content extraction. The authors offer to examine the main mechanisms of research and extraction of information from webdocuments and services. In the article we substain the using of the web services of knowledge production as a layer over spatial data infrastructures as an effective methods to provide users with spatial data and decision making, the ability to extract knowledge from arrays of heterogeneous spatial data. One of the main emphasis of the article is the that the Hadoop and Spark frameworks provide high productivity of extracting templates and knowledge from large amounts of spatial data. Web services for extracting knowledge from real geodata allow us to use a dynamic, simpler and much faster procedure for producing knowledge from spatial data.en_US
dc.publisherМіжнародна наукометрична база Index Copernicus (IC),en_US
dc.relation.ispartofseriesНаукові перспективи;No 5(22). С. 273-284-
dc.subjectінтелектуальний аналіз данихen_US
dc.subjectпродукування знаньen_US
dc.subjectінтелектуальне розподілене середовищеen_US
dc.subjectметоди web-miningen_US
dc.subjectвеб-сервіси видобування знаньen_US
dc.subjectdata miningen_US
dc.subjectknowledge productionen_US
dc.subjectintelligent distributeden_US
dc.subjectenvironmenten_US
dc.subjectWeb-mining methodsen_US
dc.subjectweb services for knowledge extractionen_US
dc.titleТЕХНОЛОГІЇ ПРОДУКУВАННЯ ЗНАНЬ НА ОСНОВІ ВЕБ-СЕРВІСІВen_US
dc.title.alternativeKNOWLEDGE PRODUCTION TECHNOLOGIES WITH THE HELP OF WEB SERVICESen_US
dc.typeArticleen_US
Располагается в коллекциях:Бібліографічні матеріали

Файлы этого ресурса:
Файл Описание РазмерФормат 
ТЕХНОЛОГІЇ ПРОДУКУВАННЯ ЗНАНЬ.pdfСтаття у журналі "Наукові перспективи": 2022. No 5(22). С. 273-284589,91 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.