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Pointwise estimates of solutions to the double-phase elliptic
equations

Igor I. Skrypnik, Kateryna O. Buryachenko

Abstract. With the help of nonlinear Wolf potentials, we derive the pointwise estimates for the weak
solutions to inhomogeneous quasilinear double-phase elliptic equations of the divergence type.
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1. Introduction

In the present work we obtain the pointwise estimates of the generalized solutions to inhomogeneous
quasilinear elliptic equations of the divergence type

−div

(
g(a(x), |∇u|) ∇u

|∇u|

)
= f(x), (1.1)

with the function g(a(x), |ξ|) = |ξ|p−1 + a(x)|ξ|q−1 under the conditions

0 ≤ a(x) ∈ C0, α(Ω), α ∈ (0, 1], 1 < p ≤ q ≤ min

(
p+ α,

n(p− 1)

n− p

)
,

q < n.

Our result generalizes the classical one obtained by T. Kilpeläinen and J. Maly in [1]. With the help
of nonlinear Wolf potentialWµ

β, p(x0, R) they proved the pointwise estimates of solutions to a quasilinear
elliptic equation with the p-Laplace and measure µ on the right-hand side. Further, these estimates
were generalized to strongly nonlinear equations in [2] and to strongly nonlinear subelliptic quasilinear
equations in [3] and were applied as an efficient tool to the study of the questions of solvability and
solutions regularity to various linear, quasilinear and nonlinear equations (see the works of M. Biroli [4],
F. Duzaar, J. Kristensen, and G. Mingione [5], J. Maly and W. Ziemer [6], G. Mingione [7], N. Phuc
and I. Verbitsky [8], and I.I. Skrypnik [9]).

Due to application of some quasilinear equations with nonstandard growth conditions for the mod-
eling of a behavior of electrorheological fluids (M. Ruzicka [10]), the qualitative theory of such equations
is permanently developed, attracting the interest of researchers.

For example, for equations of the form

−div
(
|∇u|p(x)−2∇u

)
+ V |u|p(x)−2u = f
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there were studied the questions of local regularity, the Harnack inequality was obtained and the Wiener
criterion was proved under the natural assumptions on the function p(x). The review of the corre-
sponding results can be found in the papers of Y.A. Alkhutov [11], Y.A. Alkhutov and O.V. Krashenin-
nikova [12], X. Fan and D. Zho [13], V. Liskevich and I.I. Skrypnik [14].

On the other hand, the examples constructed by M. Giaquinta [15] and P. Marcellini [16] show that
under conditions on function g(t)

tp−1 ≤ g(t) ≤ tq−1,

there exists unbounded solution (if p and q are too far from each other). For

q ≤ np

n− p
, 1 < p < n

and functions g(t), satisfying condition above, the local properties of solutions have been studied
in [17–33], if For the equations

−div

(
g(|∇u|) ∇u

|∇u|

)
= f(x)

under conditions
p− 1 ≤ g′(t)

g(t)
≤ q − 1, f ∈ Ls, s > n

the local boundedness of solutions and Hölder continuity were established in the work of G. Lieberman
[34], also there was proved Harnack inequality. These results were generalized by many researchers
(see, e.g., [7, 17–21,23,28] and [27]).

It is natural to assume that for the equations

−div

(
g(a(x), |∇u|) ∇u

|∇u|

)
= f(x)

with coefficients for which the Wolf potentials are finite, the Harnack inequality will be valid. The
main difficulty in the proof of pointwise estimates consists in that E. De Giorgi [35] and J. Moser [36]
techniques cannot be applied. We will use the iteration method developed in [1] for the p-Laplace oper-
ator. Applying this technique for our case, we obtain two-sided pointwise estimates for the generalized
solutions of quasilinear double-phase elliptic equations of the divergence type.

2. Formulation of the main results

In a bounded domain Ω ⊂ Rn, n ≥ 2 we consider an inhomogeneous quasilinear elliptic equation
of the divergence type

−divA(x, ∇u) = f(x) ≥ 0, (2.1)

where f(x) ∈ L1(Ω). We assume that the function A(x, ξ) : Ω× Rn → Rn satisfies the conditions
1) A(x, ξ) satisfies the Carathéodory condition,
2) A(x, ξ)ξ ≥ µ1(|ξ|p + a(x)|ξ|q),
3) |A(x, ξ)| ≤ µ2(|ξ|p−1 + a(x)|ξ|q−1),
with some constants µ1, µ2 > 0. We also assume that

0 ≤ a(x) ∈ C0, α(Ω), α ∈ (0, 1],

1 < p ≤ q ≤ min

(
p+ α,

n(p− 1)

n− p

)
, q < n. (2.2)
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The equations of the form (1.1) in which g(a(x), t) = |t|p−1 + a(x)|t|q−1 can serve as examples of
equations (2.1) under conditions 1)–3).

Let us introduce the necessary definitions.

Definition 2.1. Let G(a(x), t) = t(tp−1 + a(x)tq−1). Then W 1,G(Ω) denotes the class of functions u
that are weakly differentiable in Ω and satisfy the condition∫

Ω

G(a(x), |∇u|) dx <∞.

Definition 2.2. We say that u is a weak solution to Eq. (2.1), if u ∈ W 1,G(Ω) and it satisfies the
integral identity ∫

Ω

A(x, ∇u)∇φdx =

∫
Ω

f φ dx, (2.3)

for all φ ∈
0
W

1,G

(Ω).

We will prove pointwise estimates for a nonnegative weak solution to the double-phase equation
(2.1) in terms of the nonlinear Wolf potentials:

W f
1,p(x0, R) =

∞∑
j=0

ρp−n
j

∫
Bρj (x0)

f dx


1
p−1

, ρj =
R

2j
, j = 0, 1, ...

W f
1,q(x0, R) =

∞∑
j=0

ρq−n
j

∫
Bρj (x0)

f dx


1
q−1

, ρj =
R

2j
, j = 0, 1, ...,

under assumption that the series in the above formulae are convergent, i.e. the Wolf potentials are
finite.

The main result of the present work is the following theorem.

Theorem 2.1. Let u ∈ W 1,G(Ω) ∩ L∞ be a nonnegative weak solution to Eq. (2.1). Let conditions

(2.2) be satisfied and let [a]C0,α(Ω) := sup
x,y∈Ω, x̸=y

|a(x)−a(y)|
|x−y|α . Assume also that the point x0 ∈ Ω is such

that B4ρ(x0) ⊂ Ω. Then there exist constants c1, c2 > 0 depending only on p, q, n, [a]C0,α(Ω) and

||u||q−p
L∞(Ω) such that, under condition a(x0) = 0 the following estimate holds:

c1W
f
1,p(x0, ρ) ≤ u(x0) ≤ c2 inf

Bρ(x0)
u+ c2W

f
1,p(x0, 2ρ). (2.4)

If a(x0) > 0 and ρα0 = a(x0)
4[a]C0,α(Ω)

≥ ρα, then there exist constants c3, c4 > 0 depending on

p, q, n, [a]C0,α(Ω), ||u||
q−p
L∞(Ω) and a(x0) such that the following estimate

c3W
f
1,q(x0, ρ) ≤ ρ+ u(x0) ≤ 3ρ+ c4 inf

Bρ(x0)
u+ c4W

f
1,q(x0, 2ρ) (2.5)

holds.
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Under conditions a(x0) > 0 and ρ0 < ρ will be true the estimate

c3W
f
1,q(x0, ρ) + c3(W

f
1,p(x0, ρ)−W f

1,p(x0, ρ0)) ≤ ρ+ u(x0)

≤ 3ρ+ c4 inf
Bρ(x0)

u+ c4W
f
1,q(x0, 2ρ) + c4(W

f
1,p(x0, 2ρ)−W f

1,p(x0, 2ρ0)). (2.6)

Remark 2.1. In the case a(x0) = 0 inequality (2.4) yields the known result of Kilpeläinen and
Maly [1], where there were obtained the pointwise estimates of solutions to a quasilinear elliptic
equation with the p-Laplace and measure µ on the right-hand side with the help of the nonlinear Wolf
potential Wµ

β, p(x0, R):

Wµ
β, p(x0, R) :=

∞∑
j=0

(
µ(Bρj (x0))

ρn−βp
j

) 1
p−1

, ρj =
R

2j
, j = 0, 1, 2, ... (2.7)

Let us note that double-phase elliptic equations of the divergence form were studied in first in
the papers [37, 38] as models of strictly anisotropic materials and for the description of Lavrent’ev
phenomenon. Hölder continuity and Harnack inequality for bounded solutions to the homogeneous
equation (2.1) (with function f ≡ 0) were obtained in [17], [19] under conditions (2.2).

Theorem 2.1 is a consequence of the weak Harnack inequality (see, e.g., [17]) and the following
result.

Theorem 2.2. Let u ∈ W 1,G(Ω) ∩ L∞ be a nonnegative weak solution to Eq. (2.1). Let conditions
(2.2) be satisfied and let the point x0 ∈ Ω be such that B4ρ(x0) ⊂ Ω.

Let also 0 < λ < min
{
1, p(n−1)−q(n−p)

n+(q−p)(n−p)

}
. Then under condition a(x0) = 0, the following estimate

holds:

u(x0) ≤ γ

ρ−n

∫
Bρ(x0)

u(1+λ)(p−1) dx


1

(1+λ)(p−1)

+ γW f
1,p(x0, ρ). (2.8)

If a(x0) > 0 and ρα0 = a(x0)
4[a]C0,α(Ω)

≥ ρα, then the estimate

u(x0) ≤ γ

ρ−n

∫
Bρ(x0)

u(1+λ)(q−1) dx


1

(1+λ)(q−1)

+ γW f
1,q(x0, ρ) (2.9)

holds.

Under conditions a(x0) > 0 and ρ0 < ρ the following estimate is valid:

u(x0) ≤ γ


ρ−n

∫
Bρ(x0)

u(1+λ)(q−1) dx


1

(1+λ)(q−1)

+W f
1,q(x0, 2ρ0) + (W f

1,p(x0, 2ρ)−W f
1,p(x0, 2ρ0))

)
. (2.10)
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Here γ is some constant depending on µ1, µ2, p, q, n, [a]C0,α(Ω), ||u||
q−p
L∞(Ω).

Analogous result can be also obtained for a nonnegative weak solutions to the equations

−div

(
g(|∇u|) ∇u

|∇u|

)
= f(x) ≥ 0, (2.11)

with function g(t) satisfying the conditions

g ∈ C(R1
+),

(
t

τ

)p−1

≤ g(t)

g(τ)
≤
(
t

τ

)q−1

, t ≥ τ > 0, 1 < p ≤ q < n. (2.12)

Harnack-type inequality can be also proved in terms of nonlinear Wolf potential W f
β,g(x0, R):

W f
β,g(x0, R) :=

∞∑
j=0

ρj ḡ

ρβ−n
j

∫
Bρj (x0)

f dx

 , ρj =
R

2j
, j = 0, 1, 2, .... (2.13)

Here the function ḡ denotes the inverse function for g.
The main result in this direction is the following theorem.

Theorem 2.3. Let u be a nonnegative weak solution to Eq. (2.11), f ≥ 0 and conditions (2.12) be
satisfied. Then there exist constants c5, c6 > 0 depending only on p, q, n, µ1, µ2 such that, for every
point x0 ∈ Ω, B4ρ(x0) ⊂ Ω the following estimates hold:

c5W
f
1,g(x0, ρ) ≤ u(x0) ≤ c6 inf

Bρ(x0)
u+ c6W

f
1,g(x0, 2ρ). (2.14)

Here the Wolf potentials W f
1,g are defined by formula (2.13) for β = 1.

3. Upper bound of a solution, proof of Theorem 2.2

3.1. Auxiliary assertions

First of all we will prove some auxiliary assertions.

Lemma 3.1. Let 0 < λ < 1. Then for every weak solution u to Eq. (2.1), any 0 < l, δ, k ≥ q and
function ξ ∈ C∞

0 (Br(x0)) satisfying the conditions

0 ≤ ξ ≤ 1, ξ(x) ≡ 1, ∀x ∈ B r
2
(x0), |∇ξ| ≤

2

r
,

the following estimate is valid: ∫
L

(
1 +

u− l

δ

)−1−λ

|∇u|pξk dx

≤ γ

((
δ

r

)p

+

(
δ

r

)q)∫
L

(
1 +

u− l

δ

)(1+λ)(q−1)

ξk−q dx+ γδ

∫
Br(x0)

f dx, (3.1)

if a(x0) = 0 or a(x0) > 0, r > ρ0. Here L = Br(x0) ∩ {u > l}. The symbol γ denotes a constant
depending only on p, q, n, µ1, µ2, whose meaning can be varied during the paper.
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Proof. Let us substitute φ =

(
u∫
l

(1 + s−l
δ )−1−λ ds

)
+

ξk as a truncated function in the integral iden-

tity (2.3) corresponding to Eq. (2.1). Using conditions 2)–3), Young inequality, |a(x) − a(x0)| ≤

[a]αr
α, ∀x ∈ Br(x0) and the inequality

(
u∫
l

(1 + s−l
δ )−1−λ ds

)
+

≤ γδ, we get the required estimate

(3.1).

Lemma 3.2. Let 0 < λ < 1. Then for every solution u to Eq. (2.1), any 0 < l, δ, k ≥ q and function
ξ ∈ C∞

0 (Br(x0)) satisfying the conditions

0 ≤ ξ ≤ 1, ξ(x) ≡ 1, ∀x ∈ B r
2
(x0), |∇ξ| ≤

2

r
,

the following estimate holds: ∫
L

(
1 +

u− l

δ

)−1−λ

|∇u|qξk dx

≤ γ

(
δ

r

)q ∫
L

(
1 +

u− l

δ

)(1+λ)(q−1)

ξk−q dx+ γδ

∫
Br(x0)

f dx, (3.2)

if a(x0) > 0, r ≤ ρ0. Here L = Br(x0) ∩ {u > l}.

Proof. We test (2.3) by function φ =

(
u∫
l

(1 + s−l
δ )−1−λ ds

)
+

ξk. Using conditions 2)–3), Young in-

equality, 1
2a(x0) ≤ a(x) ≤ 3

2a(x0), ∀x ∈ Br(x0) and the inequality

(
u∫
l

(1 + s−l
δ )−1−λ ds

)
+

≤ γδ, we

get the required estimate (3.2).

3.2. Proof of Theorem 2.2

We will apply here the well-known Kilpeläinen–Maly technique [1] in order to prove the estimates
in the Theorem 2.2. First of all, we consider the case a(x0) = 0 and introduce the necessary notations.

We set
rj =

ρ

2j
, Bj = Brj (x0), j = 0, 1, 2, ...,

and

Aj(l) := r−n
j

∫
Bj∩{u>lj}

(
u− lj
l − lj

)(1+λ)(q−1)

ξk−q
j dx

+
(l − lj)

(q−p)n
p

rnj

∫
Bj∩{u>lj}

(
u− lj
l − lj

)(1+λ)(q−1)

ξk−q
j dx.

Denote
δj(l) = l − lj , Lj = Bj ∩ {u > lj},

ξj ∈ C∞
0 (Bj), 0 ≤ ξj ≤ 1, ξj(x) ≡ 1, ∀x ∈ Bj+1, |∇ξj | ≤

2

rj
.

The sequences {lj}, {δj} will be defined by such a way.
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Take l0 = 0 and set

δ0 =

κ−1r−n
0

∫
Bj∩{u>0}

u(1+λ)(q−1)dx


1

(1+λ)(q−1)

+

κ−1r−n
0

∫
Bj∩{u>0}

u(1+λ)(q−1)dx


1

(1+λ)(q−1)−(q−p)np

,

where κ ∈ (0, 1) will be chosen later.
It is obvious that A0(δ0) ≤ κ. We set l1 = δ0 and fix k from the equality 2n(k−(1+λ)(q−1) +

k
−(1+λ)(q−1)+(q−p)n

p ) = 1
2 . Assume that we have already chosen l2, ...., lj and δ1, ...., δj−1 so that

δi = li+1 − li, i = 1, ..., j − 1,

li−1 +
1

2
δi−2 ≤ li < li−1 + kδi−2, i = 2, ..., j, (3.3)

Ai−1(li) ≤ κ, i = 2, ..., j. (3.4)

By virtue of the choice of the number k, from the last inequality we have

Aj(lj + kδj−1) ≤ 2n(k−(1+λ)(q−1) + k
−(1+λ)(q−1)+(q−p)n

p )Aj−1(lj) ≤
1

2
κ.

Let us clarify now the choice of lj+1 and δj .
If Aj(lj +

1
2δj−1) ≤ κ, then we set lj+1 = lj +

1
2δj−1. If Aj(lj +

1
2δj−1) > κ, then there exists

l̃ ∈ (lj +
1
2δj−1, lj + kδj−1) such that Aj(l̃) = κ. In this case we set lj+1 = l̃. We used the properties of

continuity and decreasing behavior of the function Aj(l).

The following lemma underlies the Kilpeläinen–Maly method [1] and is the basic auxiliary result
for the proof of the estimates of Theorem 2.2.

Lemma 3.3. Let a(x0) = 0. Then for all j ≥ 2, the following estimate holds:

δj ≤
1

2
δj−1 + γ

rp−n
j

∫
Bj

f dx


1
p−1

. (3.5)

Proof. Let us fix some j ≥ 1. Without loss of generality we assume that

δj ≥
1

2
δj−1.

Otherwise, inequality (3.5) is obvious. Let us establish now that Aj(lj+1) = κ.

For this purpose we decompose Lj = L′
j∪L′′

j . Here L′
j := {x ∈ Lj :

u−lj
δj

< ε}. The small parameter

ε > 0 will be determined below. Using conditions on q and ξj−1 ≡ 1 in Bj , we have

r−n
j

∫
L′
j

(
u− lj
δj

)(1+λ)(q−1)

ξk−q
j dx+ r−n

j δ
(q−p)n

p

j

∫
L′
j

(
u− lj
δj

)(1+λ)(q−1)

ξk−q
j dx

≤ ε(1+λ)(q−1)r−n
j

∫
Lj

ξk−q
j−1dx+ ε

(1+λ)(q−1)−(q−p)n
p r−n

j

∫
Lj

(u− lj−1)
(q−p)n

p ξk−q
j−1dx
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≤ ελ(q−1)rnj

∫
Lj

(
u− lj−1

δj−1

)(1+λ)(q−1)

ξk−q
j−1 dx+ ελ(q−1)δ

(q−p)n
p

j−1 rnj

∫
Lj

(
u− lj−1

δj−1

)(1+λ)(q−1)

ξk−q
j−1 dx

≤ 2nελ(q−1)Aj−1(lj) ≤ 2nελ(q−1)κ. (3.6)

We set w = 1
δj

(
u∫
lj

(
1 +

s−lj
δj

) 1+λ
p
ds

)
+

and note that estimate

γ−1(ε)

(
u− lj
δj

)p−1−λ

≤ wp ≤ γ(ε)

(
u− lj
δj

)p−1−λ

holds on L′′
j . Therefore,

r−n
j

(
1 + δ

(q−p)n
p

j

)∫
L′′
j

(
u− lj
δj

)(1+λ)(q−1)

ξk−q
j dx

γ(ε)r−n
j

(
1 + δ

(q−p)n
p

j

)∫
L′′
j

w
p(1+λ)(q−1)
p−1−λ ξk−q

j dx.

We choose λ from the condition p(1+λ)(q−1)
p−1−λ < n

n−p . So, λ <
p(n−1)−q(n−p)
n+(q−p)(n−p) .With the help of Lemma

3.1, embedding theorem and the previous inequality, we obtain

r−n
j

(
1 + δ

(q−p)n
p

j

)∫
L′′
j

(
u− lj
δj

)(1+λ)(q−1)

ξk−q
j dx

≤ γ(ε)

r−n
j

∫
Lj

(
1 +

u− lj
δj

)(1+λ)(q−1)

ξ
(k−q)n−p

n
−q

j dx

+r−n
j δq−p

j

∫
Lj

(
1 +

u− lj
δj

)(1+λ)(q−1)

ξ
(k−q)n−p

n
−q

j dx+ rp−n
j δ1−p

j

∫
Bj

f dx


n
n−p

+γ(ε)

r−n
j δ

(q−p)n−p
p

j

∫
Lj

(
1 +

u− lj
δj

)(1+λ)(q−1)

ξ
(k−q)n−p

n
−q

j dx

+r−n
j δ

(q−p)n
p

j

∫
Lj

(
1 +

u− lj
δj

)(1+λ)(q−1)

ξ
(k−q)n−p

n
−q

j dx+ rp−n
j δ

1−p+(q−p)n
p

j

∫
Bj

f dx


n
n−p

.

Due to Young inequality, choice of k from the condition (k − q)n−p
n − q = 1 and the estimate

r−n
j δ

(q−p)n
p

j

∫
Lj

(
1 +

u− lj
δj

)(1+λ)(q−1)

ξj dx ≤ γκ,
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we have

r−n
j (1 + δ

(q−p)n
p

j )

∫
L′′
j

(
u− lj
δj

)(1+λ)(q−1)

ξk−q
j dx

≤ γ(ε)

κ+ δ
1−n+q n−p

p

j rp−n
j

∫
Bj

f dx


n
n−p

. (3.7)

So, it is clearly to see that estimates (3.6) and (3.7) yield the inequality

κ ≤ 2nελ(p−1)κ+ γ(ε)

κ+ δ1−p
j rp−n

j

∫
Bj

f dx


n
n−p

+γ(ε)

κ+ δ
1−p+(q−p)n

p

j rp−n
j

∫
Bj

f dx


n
n−p

. (3.8)

We choose ε to be sufficiently small, 2nελ(p−1) = 1
4 . Let us choose κ = κ(ε) as follows γ(ε)κ

p
n−p = 1

4 .
Estimate (3.8) implies that at least one of the inequalities

δj ≤ γ

rp−n
j

∫
Bj

f dx


1
p−1

or

δj ≤ γ

rp−n
j

∫
Bj

f dx


1

n−1−q n−pp

holds. From assumption of series convergence
∞∑
j=0

(
rp−n
j

∫
Bj

f dx

) 1
p−1

, we get the required estimate

(3.5). The lemma is proved.

Analogously, we can establish:

Remark 3.1. Under the conditions a(x0) > 0 and ρ0 ≥ ρ the estimate

δj ≤
1

2
δj−1 + rj + γ

rq−n
j

∫
Bj

f dx


1
q−1

(3.9)

is true for all j ≥ 2.
For a(x0) > 0 and ρ0 < ρ there exists j0 > 1 : ρ

2j0+1 < ρ ≤ ρ0
2j0
, such that

δj ≤
1

2
δj−1 + rj + γ

rp−n
j

∫
Bj

f dx


1
p−1

, (3.10)
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for all 1 ≤ j < j0.
In the case j ≥ j0 estimate (3.9) is valid:

δj ≤
1

2
δj−1 + rj + γ

rq−n
j

∫
Bj

f dx


1
q−1

. (3.9)

Using proved auxiliary assertions (Lemmas 3.1–3.3), Remark 3.1, we complete the proof of Theo-
rem 2.2.

Let us sum inequalities (3.5) for j = 2, ..., J :

lJ ≤ l1 + γδ1 +
∞∑
j=0

rp−n
j

∫
Bj

f dx


1
p−1

.

Since l1 = δ0 and δ1 ≤ kδ0, we have

lJ ≤ γδ0 +
∞∑
j=0

rp−n
j

∫
Bj

f dx


1
p−1

,

where δ0 has been already defined above.
In the last inequality we pass to the limit J → ∞. Let l := lim

j→∞
lj . Then we obtain

u(x0) ≤ l ≤ γδ0 +
∞∑
j=0

rp−n
j

∫
Bj

f dx


1
p−1

.

Here x0 is the Lebesgue point of the function (u − l)
(1+λ)(p−1)
+ . Due to definition of δ0, we arrive to

estimate (2.8). To prove estimate (2.9), we sum inequalities (3.9) forj = 2, ..., J . As a result, we have

lJ ≤ γδ0 + 2ρ+ γW f
1,q(x0, 2ρ). (3.11)

The definition of l1 yields δ0 < ∞. So, the sequence {lj}j∈N is convergent and δj → 0 as j → ∞.
Passing to the limit J → ∞ in (3.11) and setting l := lim

j→∞
lj , we obtain:

1

rnj

∫
Bj

(u− l)
(1+λ)(q−1)
+ ≤ γδ

(1+λ)(q−1)
j → 0, j → ∞.

Let x0 be chosen as the Lebesgue point of the function (u − l)
(1+λ)(q−1)
+ . Then we get u(x0) ≤ l ≤

γδ0 + 2ρ+ γW f
1,q(x0, 2ρ). Thus, estimate (2.9) is also proved.

We consider now the case a(x0) > 0, ρ0 < ρ and prove estimate (2.10). For this purpose, we use
Remark 3.1 and sum (3.10) for j = 2, ..., j0 − 1 and (3.9) for j = j0, j0 + 1, ..., J.

As a result, we get

lJ ≤ γδ0 + 2ρ+ γ(W f
1,q(x0, 2ρ0) + (W f

1,p(x0, 2ρ)−W f
1,p(x0, 2ρ0))). (3.12)
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The definition of l1 yields δ0 < ∞. So, the sequence {lj}j∈N is convergent and δj → 0 as j → ∞. Let
us pass to the limit J → ∞ in (3.12) and let l := lim

j→∞
lj . Then

1

rnj

∫
Bj

(u− l)
(1+λ0)(p−1)
+ ≤ γδ

(1+λ0)(p−1)
j → 0, j → ∞.

Choosing x0 as the Lebesgue point of the function (u− l)
(1+λ0)(p−1)
+ , we have u(x0) ≤ l.

Thus, estimate (2.10) and Theorem 2.2 are completely proved.

4. Proof of Theorem 2.1

The right estimates of Theorem 2.1 will be consequence of Theorem 2.2 and the weak Harnack
inequality obtained earlier in [17] for double-phase functionals

 ∫
Bρ(x0)

us ds


1
s

≤ inf
x∈Bρ(x0)

u, (4.1)

with some exponent s > 0. Indeed, from the inequality (4.1), Theorem 2.2 and estimate (2.8), we arrive
to

u(x0) ≤ c6 inf
Bρ(x0)

u+ c6W
f
1,p(x0, 2ρ),

if a(x0) = 0.
If a(x0) > 0 and ρα0 = a(x0)

4[a]C0,α(Ω)
≥ ρα, estimates (4.1) and (2.9) yield

u(x0) ≤ 3ρ+ c8 inf
Bρ(x0)

u+ c8W
f
1,q(x0, 2ρ).

Moreover, (4.1) and (2.10) yield the estimate

u(x0) ≤ 3ρ0 + c8 inf
Bρ(x0)

u+ c8W
f
1,q(x0, 2ρ0) + c8(W

f
1,p(x0, 2ρ)−W f

1,p(x0, 2ρ0)).

It remains to prove the lower bounds in (2.4)–(2.6). For this purpose, we test (2.3) by φ = ξq, ξ ∈
C∞
0 (Br(x0)), 0 ≤ ξ ≤ 1, ξ ≡ 1 in B r

2
(x0) and |∇ξ| ≤ γ

r , 0 < r ≤ ρ. Let us note that

g(a(x), a)b ≤ εg(a(x), a)a+ g

(
a(x),

b

ε

)
b, a, b, ε > 0. (4.2)

In addition, it is clearly to see 3
4a(x0) ≤ a(x) ≤ 5

4a(x0), ∀x ∈ Bρ(x0). So, we get(
3

4

)q−1

g(a(x0), t) ≤ g(a(x), t) ≤
(
5

4

)p−1

g(a(x0), t), (4.3)

if a(x0) > 0 and ρ0 ≥ ρ.
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From conditions 2)–3), estimates (4.2) and (4.3) with ε = gβ
(
a(x0),

m( r2)−m(r)

r

)
, 0 < β <

min
(
1, 1

(n−1)(q−1)

)
, m(r) = inf

Br(x0)
u, we have

∫
B r

2
(x0)

f dx ≤ γ

∫
Br(x0)

g(a(x0), |∇u|)|∇ξ| ξq−1dx

≤ γε

∫
Br(x0)

ψ−β

(
u−m(r)

r

)
G(a(x0), |∇u|)
u−m(r)

ξq dx

+
γ

r

∫
Br(x0)

g

(
a(x0),

1

ε

u−m(r)

r
ψβ

(
u−m(r)

r

))
dx. (4.4)

Let us substitute φ = ψ−β
(
u
r

)
ξq as φ in (2.3). Using conditions (2.2) and the weak Harnack

inequality, we obtain

ε

∫
Br(x0)

ψ−β

(
u−m(r)

r

)
G(a(x0), |∇u|)
u−m(r)

ξq dx

≤ γr−1ε

∫
Br(x0)

ψ1−β

(
u−m(r)

r

)
dx

≤ γr−1ε

∫
Br(x0)

g1−β

(
a(x0),

u−m(r)

r

)
dx

≤ γrn−1g

(
a(x0),

m
(
r
2

)
−m(r)

r

)
. (4.5)

Since 0 < β < min
(
1, 1

(n−1)(q−1)

)
, we have

γr−1

∫
Br(x0)

g

(
a(x0),

1

ε

u−m(r)

r
gβ
(
a(x0),

u−m(r)

r

))
dx

≤ γrn−1g

(
a(x0),

(
m
(
r
2

)
−m(r)

r

))

+γr−1ε1−q

∫
Br(x0)

g1+β(q−1)

(
a(x0),

u−m(r)

r

)
dx

≤ γrn−1g

(
a(x0),

(
m
(
r
2

)
−m(r)

r

))
. (4.6)
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Relations (4.4)–(4.6) yield

r1−n

∫
B r

2
(x0)

f dx ≤ g

(
a(x0),

m
(
r
2

)
−m(r)

r

)
. (4.7)

We note that for a(x0) > 0 the following inequality is true:

g

(
a(x0),

m
(
r
2

)
−m(r)

r

)
≤ 1 + (γ + a(x0))

(
m
(
r
2

)
−m(r)

r

)q−1

. (4.8)

If a(x0) = 0, then

g

(
0,
m
(
r
2

)
−m(r)

r

)
≤ 1 + γ

(
m
(
r
2

)
−m(r)

r

)p−1

.

By integrating inequality (4.7) over r ∈ (0, ρ) and using the previous estimates, we get the lower
bounds in (2.4) and (2.5).

To establish the lower bound in (2.6), we use the proved estimates (4.7) and (4.8).
Integrating inequality (4.7) over r ∈ (0, ρ), we have to necessity to divide the interval of integration

into r ∈ (0, ρ0) and r ∈ (ρ0, ρ).
Since

ρ0∫
0

rq−n

∫
B r

2
(x0)

f dx


1
q−1

dr =W f
1,q(x0, ρ0)

and
ρ∫

ρ0

rp−n

∫
B r

2
(x0)

f dx


1
p−1

dr

=

ρ∫
0

rp−n

∫
B r

2
(x0)

f dx


1
p−1

dr −
ρ0∫
0

rp−n

∫
B r

2
(x0)

f dx


1
p−1

dr

=W f
1,p(x0, ρ)−W f

1,p(x0, ρ0),

we get the lower bound in (2.6).
Theorem 2.1 is completely proved.
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