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Removability of an isolated singularity for solutions
of anisotropic porous medium equation
with absorption term

Maria A. Shan
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Abstract. The removability of an isolated singularity for solutions to the quasilinear equation

ut −
n∑
i=1

(
umi−1uxi

)
xi

+ f(u) = 0, u ≥ 0,

is proved.
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1. Introduction and the main result

We will study solutions to a quasilinear parabolic equation in the divergent form

ut − divA(x, t, u,∇u) + a0(u) = 0, (x, t) ∈ ΩT , (1.1)

satisfying the initial condition
u(x, 0) = 0, x ∈ Ω \ {(0, 0)} (1.2)

in ΩT = Ω× (0, T ), 0 < T <∞, where Ω is a bounded domain in Rn, n > 2.

The qualitative behavior of solutions to elliptic equations was investigated by many authors starting
from the seminal papers by Serrin (see [4–8] ). In [1], Brezis and Veron proved that, for q ≥ n

n−2 , the
isolated singularities of solutions to the elliptic equation

−△u+ uq = 0,

are removable. The result on the removability of an isolated singularity for the parabolic equation

∂u

∂t
−△u+ |u|q−1u = 0, (x, t) ∈ ΩT \ {(0, 0)}

was obtained by Brezis and Friedman [2] in the case q ≥ n+2
n . The anisotropic elliptic equation with

absorption

−
n∑

i=1

(
|uxi |pi−2uxi

)
xi
+ |u|q−1u = 0
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was studied in [12]. It was proved that the isolated singularity for a solution of the this equation is
removable, if

q ≥ n(p− 1)

n− p
, 1 ≤ p1 ≤ . . . ≤ pn ≤ n− 1

n− p
p.

For quasilinear elliptic and parabolic equations of a special form with absorption similar questions
were treated by many authors. A survey of their results and references can be found in Veron’s
monograph [14]. The removability of isolated singularities for more general elliptic and parabolic
equations with absorption was established in [10] and [11].

We suppose that the functions A = (a1, ..., an) and a0 satisfy the Carathéodory conditions, and the
following structure conditions hold:

A(x, t, u, ξ)ξ ≥ ν1

n∑
i=1

|u|mi−1|ξi|2,

|ai(x, t, u, ξ)| ≤ ν2u
mi−1

2

 n∑
j=1

|u|mj−1|ξj |2
 1

2

, i = 1, n, (1.3)

a0(u) ≥ ν1f(u),

with positive constants ν1, ν2, a continuous positive function f(u), and

min
1≤i≤n

mi > 1, max
1≤i≤n

mi ≤ 1 +
κ

n
, p < n, (1.4)

where κ = n(m− 1)+ 2, d = 1
n

n∑
i=1

mi
2 . Without loss of generality, we also assume that mn = max

1≤i≤n
mi.

We write V2,m(ΩT ) for the class of functions φ ∈ C(0, T, L2(Ω)) with
n∑

i=1

∫∫
ΩT

|φ|mi−1 |φxi |
2 dxdt <∞.

We say that u is a weak solution to problem (1.1), (1.2) if, for an arbitrary ψ ∈ C1(ΩT ) vanishing in
a neighborhood of {(0, 0)}, we have an inclusion uψ ∈ V2,m(ΩT ) and, for any interval (t1, t2) ⊂ [0, T ),
the integral identity∫

Ω

uφdx

∣∣∣∣∣∣
t2

t1

+

t2∫
t1

∫
Ω

{−uφt +A(x, t, u,∇u)∇φ+ a0(u)φ} dx dt = 0 (1.5)

holds for φ = ζψ with an arbitrary ζ ∈
o
V 2,m(ΩT ).

We say that a solution u to problem (1.1), (1.2) has a removable singularity at {(0, 0)} if u can be
extended to {(0, 0)} so that the extension ũ of u satisfies (1.5) with ψ ≡ 1 and ũ ∈ V2,m(ΩT ).

Remark 1.1. Condition (1.4) implies the local boundedness of a weak solutions to Eq. (1.1) ([3]).

The main result of this paper is the following theorem.

Theorem 1.1. Let conditions (1.3) and (1.4) be satisfied, and let u be a nonnegative weak solution
to problem (1.1), (1.2). Assume also that f(u) = uq and

q ≥ m+
2

n
. (1.6)

Then the singularity at the point {(0, 0)} is removable.

The rest of the paper contains the proof of Theorem 1.1.
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2. Integral estimates of solutions

For 0 ≤ λ < n we define the numbers

κ(λ) =
1

2 + (n− λ)(m− 1)
, κi(λ) =

2

2 + (n− λ)(m−mi)
, i = 1, n.

Let

ρλ(x, t) =

(
t
κ(λ)
κ1(λ) +

n∑
i=1

|xi|
κi(λ)

κ1(λ)

)κ1(λ)

.

We assume that Dλ(r) = {(x, t) : ρλ(x, t) < r}, Dλ(R0) ⊂ ΩT . For 0 < r < R0 we set M(r, λ) =
sup

Dλ(R0)\Dλ(r)
u(x, t), E(r, λ) = {(x, t) ∈ ΩT : u(x, t) > M(r, λ)}, ur(r, t, λ) = (u(x, t) −M(r, λ))+ and

consider the function ψr(x, t) = ηr(ρλ(x, t)), where ηr : R1 → R1 is a function taking the following
values: ηr(z) = 0, if z ≤ r, ηr(z) = 1 if z ≥ R(r), and ηr(z) =

[
(1− ε) ln ln 1

r

]−1 (
ln ln 1

r− ln ln 1
z

)
, if

r ≤ z ≤ R(r). Here, ε is a number from the interval (0, 1) specified in what follows, and R(r) is defined
by the equality

ln
1

R(r)
= lnε

1

r
. (2.1)

Note that, by the evident equalities 1
q−1 = (n− λ)κ(λ), 2

q−mi
= (n− λ)κi(λ), i = 1, n, with λ ≥ 0

defined by

λ = n− 2

q −m
, (2.2)

the Keller–Osserman estimate yields

M(r, λ) ≤ γrλ−n, r > 0. (2.3)

This estimate follows from Theorems 4.1 and 4.2 (Appendix) in the case p1 = p2 = ... = pn = 2.
Consider the functions F1(r, λ) and F2(r, λ) defined by the equalities

F1(r, λ) =



Rλ(r), λ > 0,

ln
q−2
q−1

1

r
, λ = 0, q > 2,

ln ln
1

r
, λ = 0, q = 2,

ln
− 2−q
q−1

1

r
, λ = 0, q < 2,

F2(r, λ) =



Rλ(r), λ > 0,

ln
q−2m1
q−m1

1

r
, λ = 0, q > 2m1,

ln ln
1

r
, λ = 0, q = 2m1,

ln
− 2m1−q

1−m1
1

r
, λ = 0, q < 2m1.

To simplify the following calculations, we writeM(r), E(r), and ur(x, t) instead ofM(r, λ), E(r, λ),
and ur(x, t, λ).

Lemma 2.1. Let the assumptions of Theorem 1.1 be satisfied. Then the following estimate holds
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sup
0<t<T

∫
E( ρ2 )×{t}

u∫
M( ρ2 )

ln+
s

M
(ρ
2

)dsψl
r dx+

n∑
i=1

∫∫
E( ρ2 )

umi−2|uxi |2ψl
rdxdt

+

∫∫
E( ρ2 )

uq ln
u

M
(ρ
2

)ψl
rdxdt ≤ γ (F1(r, λ) + F2(r, λ)) (2.4)

for every l ≥ 2q
q−mn

and for every 2r < ρ ≤ R0
2 .

Proof. Testing (1.5) by φ = ln+
u

M( ρ2 )
ψl
r and using (1.3) and the Young inequality, we get

sup
0<t<T

∫
E( ρ2 )×{t}

u∫
M( ρ2 )

ln+
s

M
(ρ
2

)dsψl
r dx+

n∑
i=1

∫∫
E( ρ2 )

umi−2|uxi |2ψl
rdxdt

+

∫∫
E( ρ2 )

uq ln
u

M
(ρ
2

)ψl
rdxdt ≤ γ

∫∫
E( ρ2 )

u ln
u

M
(ρ
2

) ∣∣∣∣∂ψr

∂t

∣∣∣∣ψl−1
r dxdt

+ γ
n∑

i=1

∫∫
E( ρ2 )

umi ln2
u

M
(ρ
2

) ∣∣∣∣∂ψr

∂xi

∣∣∣∣2 ψl−2
r dxdt.

From whence, by the Young inequality, we obtain

sup
0<t<T

∫
E( ρ2 )×{t}

u∫
M( ρ2 )

ln+
s

M
(ρ
2

)dsψl
r dx+

n∑
i=1

∫∫
E( ρ2 )

umi−2|uxi |2ψl
rdxdt

+

∫∫
E( ρ2 )

uq ln
u

M
(ρ
2

)ψl
rdxdt ≤ γ

∫∫
E( ρ2 )

ln
u

M
(ρ
2

) ∣∣∣∣∂ψr

∂t

∣∣∣∣ q
q−1

dxdt

+γ

∫∫
E( ρ2 )

ln
2q−mi
q−mi

u

M
(ρ
2

) ∣∣∣∣∂ψr

∂xi

∣∣∣∣ 2q
q−mi

dxdt = γ (J1 + J2) . (2.5)

By (2.3), we have

J1 + J2 ≤ γ

∫∫
Dλ(R(r))\Dλ(r)

ln
− 1
q−1

1

ρλ
ρ
− 1
κ(λ)

q
q−1

λ dxdt

+ γ
n∑

i=1

∫∫
Dλ(R(r))\Dλ(r)

ln
− mi
q−mi

1

ρλ
ρ
− 2q
κi(λ)(q−mi)

λ dxdt

≤γ
R(r)∫
r

ln
− 1
q−1

1

z
zλ−1dz + γ

R(r)∫
r

ln
− m1
q−m1

1

z
zλ−1dz ≤γ (F1(r, λ) + F2(r, λ)) . (2.6)

Combining (2.5) and (2.6), we obtain (2.4), which completes the proof of the lemma.
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We now define a function u(ρ)(x, t) and a set E
(ρ
2 , 2ρ

)
as follows:

u(ρ)(x, t) = min
(
M
(ρ
2

)
−M(2ρ), u2ρ(x, t)

)
,

E
(ρ
2
, 2ρ
)
= {x ∈ E(2ρ) : u < M

(ρ
2

)
}.

Lemma 2.2. Under the assumptions of Lemma 2.1, the following inequality holds:∫∫
E(2ρ)

u(ρ)uqψl
rdxdt ≤ γ

(
M
(ρ
2

)
−M(2ρ)

){
F3(r, λ) + (F1(r, λ) + F2(r, λ))

1
2F

1
2
4 (r, λ)

}
, (2.7)

where

F3(r, λ) =

 Rλ(r), λ > 0,

ln
− 1
q−1

1

r
, λ = 0,

F4(r, λ) =

 Rλ(r), λ > 0,

ln−1 1

r
, λ = 0.

Proof. Testing (1.5) by φ = u(ρ)ψl
r and using (1.3) and the Young inequality, we get

∫∫
E(2ρ)

u(ρ)uqψl
rdxdt ≤ γ

∫∫
E(2ρ)

u(ρ)
∣∣∣∣∂ψr

∂t

∣∣∣∣ q
q−1

dxdt

+γ

n∑
i=1

∫∫
E(2ρ)

 n∑
j=1

umj−1|uxj |2
 1

2

u
mi−1

2 u(ρ)
∣∣∣∣∂ψr

∂xi

∣∣∣∣ψl−1
r dxdt

= γ (J3 + J4) . (2.8)

By the Hölder inequality, (2.3), and Lemma 2.1, the integrals on the right-hand side of (2.8) are
estimated as follows:

J3 ≤ γ
(
M
(ρ
2

)
−M(2ρ)

)∫∫
E(2ρ)

∣∣∣∣∂ψr

∂t

∣∣∣∣ q
q−1

dxdt

≤ γ
(
M
(ρ
2

)
−M(2ρ)

) ∫
Dλ(R(λ))\Dλ(r)

ln
− q
q−1

1

ρλ
ρ
− q

(q−1)κ(λ)

λ dxdt

≤γ
(
M
(ρ
2

)
−M(2ρ)

)R(λ)∫
r

ln
− q
q−1

1

z
zλ−1dz≤γ

(
M
(ρ
2

)
−M(2ρ)

)
F3(r, λ). (2.9)

745



Similarly,

J4 ≤ γ
(
M
(ρ
2

)
−M(2ρ)

) n∑
i=1

 n∑
j=1

∫∫
E(2ρ)

umj−2|uxj |2ψl
rdxdt


1
2

×

∫∫
E(2ρ)

umi

∣∣∣∣∂ψr

∂xi

∣∣∣∣2 ψl
rdxdt


1
2

≤ γ
(
M
(ρ
2

)
−M(2ρ)

)

× (F1(r, λ) + F2(r, λ))
1
2

n∑
i=1

 ∫∫
Dλ(R(λ))\Dλ(r)

ln−2 1

ρλ
ρ
−mi(n−λ)− 2

κi(λ)

λ dxdt


1
2

≤ γ
(
M
(ρ
2

)
−M(2ρ)

)
(F1(r, λ) + F2(r, λ))

1
2

 R(r)∫
r

ln−2 1

z
zλ−1dz


1
2

≤ γ
(
M
(ρ
2

)
−M(2ρ)

)
(F1(r, λ) + F2(r, λ))

1
2 F

1
2
4 (r, λ). (2.10)

Combining (2.8)–(2.10), we arrive at the required relation (2.7), which proves the lemma.

2.1. Pointwise estimates of solutions

Similarly to [13], using the De Giorgi-type iteration, we prove the following estimate

(M(ρ)−M(2ρ)1+m+mn+2
2 ≤ γ

(
M
(ρ
2

)
ρ
− 1
κ(λ) +

n∑
i=1

Mmi

(ρ
2

)
ρ
− 2
κi(λ)

)n+2
2 ∫∫
Dλ(R0)\Dλ( ρ2 )

u1+m
2ρ dxdt.

We note that u2ρ ≤M
(ρ
2

)
−M(2ρ) for (x, t) ∈ Dλ(R0)\Dλ

(ρ
2

)
. By the Hölder inequality and Lemma

2.2, we get

(M(ρ)−M(2ρ)1+m+mn+2
2 ≤ γM

m+1
q+1

(ρ
2

)(
M
(ρ
2

)
ρ
− 1
κ(λ) +

n∑
i=1

Mmi

(ρ
2

)
ρ
− 2
κi(λ)

)n+2
2

×
{
F3(r, λ) + (F1(r, λ) + F2(r, λ))

1
2F

1
2
4 (r, λ)

}
|Dλ(R0)|

q−m
q+1 . (2.11)

In inequality (2.11) we pass to the limit as r → 0. By (2.1) the following relations are valid for
λ = 0:

F1(r, 0)F4(r, 0) = ln
q−2
q−1

1

r
ln−1 1

R(r)
= ln

q−2
q−1

−ε 1

r
, if q > 2,

F2(r, 0)F4(r, 0) = ln
q−2m1
q−m1

1

r
ln−1 1

R(r)
= ln

q−2m1
q−m1

−ε 1

r
, if q > 2m1.

Let us choose ε from the condition max
(
1
2 ,

q−2
q−1 ,

q−2m1

q−m1

)
< ε < 1. Passing to the limit as r → 0 in

(2.11), we obtain, for any ρ ≤ R0
2 ,

M(ρ)−M(2ρ) ≤ 0.
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Iterating the last inequality, we get, for any ρ ≤ R0
2 ,

M(ρ) ≤M(R0).

This proves the boundedness of solutions.

3. End of the proof of Theorem 1.1

Let K be a compact subset in Ω, and let ξ = 0 in ∂Ω×(0, T ) such that ξ = 1 for (x, t) ∈ K×(0, T ).
Testing (1.5) by φ = uξ2ψr, ψ = ψr, using conditions (1.3), the Young inequality, and the boundedness
of u and passing to the limit r → 0, we get

sup
0<t<T

∫
K

u2dx+

n∑
i=1

T∫
0

∫
K

umi−1|uxi |2dxdt+
T∫
0

∫
K

uq+1dxdt ≤ γ. (3.1)

Testing (1.5) by φψr, where φ is an arbitrary function that belongs to
o
V 2,m(ΩT ), using (3.1) and

the boundedness of the solution, and passing to the limit r → 0, we obtain the integral identity (1.5)

with an arbitrary φ ∈
o
V 2,m(Ωt) and ψ ≡ 1. Thus, Theorem 1.1 is proved.

4. Appendix

Let (x(0), t(0)) ∈ ΩT . For any τ, θ1, θ2, . . . , θn > 0, θ = (θ1, . . . , θn), we define Qθ,τ (x
(0), t(0)) :=

{(x, t) : |t− t(0)| < τ, |xi − x
(0)
i | < θi, i = 1, n} and set

M(θ, τ) := sup
Qθ,τ (x(0),t(0))

u, δ(θ, τ) := sup
Qθ,τ (x(0),t(0))

δ(u),

Φ(θ, τ) := sup
Qθ,τ (x(0),t(0))

Φ(u),Φ(u) =

u∫
0

φ(s)ds, φ(s) = smn−1f(s).

We say that a nondecreasing continuous function ψ satisfies condition (A) if for any ε ∈ (0, 1) there
exists u0(ε) ≥ 1 such that

ψ(εu) ≤ εµψ(u), (A)

with some µ > 0 and for all u ≥ u0(ε).

Theorem 4.1 ( [9]). Let conditions (1.3) and (1.4) be satisfied, and let u be a nonnegative weak
solution to Eq. (1.1). Assume also that f ∈ C1(R1

+) and f
′
(u) ≥ 0. Let (x(0), t(0)) ∈ ΩT , and let us fix

σ ∈ (0, 1), τ ∈ (0,min(θpnn , t(0), T − t(0))), θi ∈ (0, θn) for i ∈ I
′
= {i = 1, n : mi(pi − 1) < mn(pn − 1)}

and θi = θn for i ∈ I
′′
= {i = 1, n : mi(pi− 1) = mn(pn− 1)}. Then there exist positive numbers c8, c9

depending only on n, ν1, ν2,m1, . . . ,mn, p1, . . . , pn such that either

u(x(0), t(0)) ≤ (τ−1ρpn)
1

mn(pn−1)−1 +
∑
i∈I′

(θ−1
i θ

pn
pi
n )

pi
mn(pn−1)−mi(pi−1) (4.1)

or

Φ(σθ, στ) ≤ c8(1− σ)−c9θ−pn
n δ(θ, τ)Mmnpn−1(θ, τ). (4.2)
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On the other hand, if I
′
is empty, i.e. m1(p1 − 1) = m2(p2 − 1) = · · · = mn(pn − 1), then either

u(x(0), t(0)) ≤ (τ−1θpnn )
1

mn(pn−1)−1 (4.3)

or (4.2) holds true.

Theorem 4.2 ([9]). Let conditions (1.3) and (1.4) be satisfied, and let u be a nonnegative weak solution
to (1.1), f ∈ C1(R1

+), and f
′
(u) ≥ 0. Let ∂ΩT be the parabolic boundary of ΩT . Assume also that

lim
(x,t)→∂ΩT

u(x, t) = +∞, and, with some 0 ≤ a ≤ 1 and c > 0, the following relation holds:

δ(u) ≤ cua.

Let ψ(u) = u−1Φ
1

mnpn+a−1 (u) satisfy condition (A). Let (x(0), t(0)) ∈ ΩT and 8ρ = dist(x(0), ∂Ω). Fix
τ ∈ (0,min(ρpn , t(0), T − t(0))) and θi ∈ (0, ρ) for i ∈ I

′
. Then there exists a positive number c10 that

depends only on n, ν1, ν2,m1, ...,mn, p1, ..., pn, and c and is such that either (4.1) holds, or

Φ(u(x(0), t(0))) ≤ c10θ
−pn
n umnpn+a−1(x(0), t(0)). (4.4)

On the other hand, if I
′
is empty, i.e., m1(p1 − 1) = m2(p2 − 1) = ... = mn(pn − 1), and ψ(u) =

u−1Φ
1

mnpn+a−1 (u) satisfies condition (A), then either (4.3) holds, or (4.4) holds true.
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