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a b s t r a c t

In this article we study quasilinear equations model of which are

−
n
i=1


|uxi |pi−2uxi


xi

+ f(u) = 0, u ≥ 0,

∂u

∂t
−
n
i=1


u(mi−1)(pi−1)|uxi |pi−2uxi


xi

+ f(u) = 0, u ≥ 0.

Despite of the lack of comparison principle, we prove a priori estimates of
Keller–Osserman type. Particularly under some natural assumptions on the function
f, for nonnegative solutions of p-Laplace equation with absorption term we prove
an estimate of the form u(x0)

0
f(s)ds ≤ cr−pup(x0), x0 ∈ Ω , B8r(x0) ⊂ Ω ,

with constant c independent of u, using this estimate we give a simple proof of the
Harnack inequality. We prove a similar result for the evolution p-Laplace equation
with absorption.
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1. Introduction and main results

The qualitative behavior of large solutions of elliptic and parabolic equations has been investigated by
many authors starting from the seminal papers of Keller [11] and Osserman [27]. For example, for the elliptic
equation with an absorption term

−△p u+ f(u) = 0,

any nonnegative solution u satisfies

u(x) ≤ c dist(x, ∂Ω)−
p

q−p+1 , f(u) = uq, q > p− 1
u(x) ≤ c |ln dist(x, ∂Ω)| , f(u) = eu.

Estimates of this type play a crucial role in the theory of existence or nonexistence of large solutions, in the
problems of removable singularities for solutions to elliptic and parabolic equations. Up to our knowledge
all the known estimates for large solutions to elliptic and parabolic equations are related with equations
for which some comparison properties hold. We refer to [18,22,31,37] for an account of these results and
references therein.

Anisotropic elliptic and parabolic equations have been the object of very few works because in general
such properties do not hold. The main ones concern equations only in the precise choice of absorption term
f(u) = uq see [1,5,25,26,33–35,40,38,39].

In this article we give a proof of the Keller–Osserman a priori estimates for solutions to anisotropic
elliptic and parabolic equations with absorption. Using these estimates we give a simple proof of the Harnack
inequality for solutions of p-Laplace and evolution p-Laplace equations with absorption term.

The first main result of this paper is an a priori estimate of the Keller–Osserman type for nonnegative
solutions to elliptic equations

− div A(x,∇u) + a0(u) = 0, x ∈ Ω , (1.1)

where Ω is a bounded domain in Rn, n ≥ 2.
We suppose that the functions A = (a1, . . . , an) and a0 satisfy the Caratheodory conditions and the

following structure conditions hold

A(x, ξ)ξ ≥ ν1

n
i=1
|ξi|pi ,

|ai(x, ξ)| ≤ ν2


n
j=1
|ξj |pj

1− 1
pi

, i = 1, n (1.2)

a0(u) ≥ ν1f(u),

where ν1, ν2 are positive constants and f is continuous positive function.
We say that u is a weak solution to Eq. (1.1) in Ω if u ∈ W 1,p1,p2,...,pn(Ω) =


u ∈ W 1,1(Ω) : ∂u∂xi ∈

Lpi , i = 1, n


and the integral identity
Ω

{A(x,∇u)∇ϕ+ a0(u)ϕ} dx = 0 (1.3)

holds for any ϕ ∈
o

W
1,p1,p2,...,pn

(Ω).
Let x(0) ∈ Ω , for any θ1, θ2, . . . , θn > 0, θ = (θ1, θ2, . . . , θn) we define Qθ(x(0)) := {x : |xi − x(0)

i | <
θi, i = 1, n} and set F (u) =

 u
0 f(s)ds, δ(u) = F (u)

f(u) , M(θ) = supQθ(x(0)) u, δ(θ) = supQθ(x(0)) δ(u),
F (θ) = supQθ(x(0)) F (u), N(θ) = max{M(θ), δ(θ)}.



M.A. Shan, I.I. Skrypnik / Nonlinear Analysis 155 (2017) 97–114 99

Theorem 1.1. Let the conditions (1.2) be fulfilled and u be a nonnegative weak solution to Eq. (1.1) in Ω ,
assume also that

1 < p1 ≤ p2 ≤ · · · ≤ pn ≤
np

n− p
,

1
p

= 1
n

n
i=1

1
pi
, p < n. (1.4)

Let x(0) ∈ Ω , fix σ ∈ (0, 1), θi ∈ (0, θn) for i ∈ I ′ = {i = 1, n : pi < pn} and θi = θn for
i ∈ I ′′ = {i = 1, n : pi = pn}, then there exist positive numbers c1, c2 depending only on n, ν1, ν2, p1, . . . , pn
such that either

u(x(0)) ≤

i∈I′


θ−1
i θ

pn
pi
n

 pi
pn−pi

(1.5)

or

F (σθ) ≤ c1(1− σ)−c2θ−pnn

δ(θ)Npn−1(θ) + δp(θ) +Npn(θ)
n
i=1


δ(θ)
N(θ)

 (pi−1)p
p−1

 , (1.6)

for all Q8θ(x(0)) ⊂ Ω .

On the other hand, if I ′ is empty, i.e. p = p1 = p2 = · · · = pn, then there exist positive numbers c3, c4
depending only on p, n, ν1, ν2 such that

F (σθ) ≤ c3(1− σ)−c4θ−pδ(θ)

Mp−1(θ) + δp−1(θ)


, (1.7)

for all σ ∈ (0, 1) and θ > 0, such that B8θ(x(0)) ⊂ Ω , where F (θ) = supBθ(x(0)) F (u), δ(θ) = supBθ(x(0)) δ(u),
M(θ) = supBθ(x(0)) u and Bθ(x(0)) = {x : |xi − x(0)

i | < θ, i = 1, n}.

Remark 1.1. Condition (1.4) implies the local boundedness of solutions [12]. The condition is sharp as there
are unbounded solutions to (1.1) if its condition is violated (cf. [7,20]).

Remark 1.2. Using the comparison theorem and radial type solutions, under the additional condition that
f(u) is nondecreasing, inequality of the type (1.7) was proved in [15,16]. Inequality (1.7) implies the
Keller–Osserman condition for large solution. This result has been proved in [17].

It is of interest to have more precise sub-estimate of solutions. For this we use the following additional
condition. We say that nondecreasing continuous function ψ satisfies the condition (A) if for any ε ∈ (0, 1)
there exists u0(ε) ≥ 1 such that

ψ(εu) ≤ εµψ(u), (A)

with some µ > 0 and for all u ≥ u0(ε).

Proposition 1.1. Let the conditions (1.2), (1.4) be fulfilled and u be a nonnegative weak solution to Eq. (1.1).
Assume also that limx→∂Ω u(x) = +∞, and with some 0 ≤ a ≤ 1 and c > 0 there holds

δ(u) ≤ cua. (1.8)

Set b = max

a+ pn − 1, pn + (a− 1)(p1 − 1) pp−1


and let ψ(u) = u−1F

1
b (u) satisfy the condition (A). Let

x(0) ∈ Ω and 8ρ = dist(x(0), ∂Ω), fix θi ∈ (0, ρ) for i ∈ I ′, then there exists a positive number c5 depending
only on n, ν1, ν2, p1, . . . , pn and c such that either

u(x(0)) ≤

i∈I′


θ−1
i ρ

pn
pi

 pi
pn−pi

, (1.9)
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or

F (u(x(0))) ≤ c5 dist−pn(x(0), ∂Ω)ub(x(0)). (1.10)

On the other hand, if I ′ is empty, i.e. p = p1 = p2 = · · · = pn and ψ(u) = u−1F
1

p+a−1 (u) satisfies the
condition (A), then

F (u(x(0))) ≤ c6 dist−p(x(0), ∂Ω)up+a−1(x(0)) (1.11)

with positive constant c6 depending only on p, n, ν1, ν2 and c.

A function which satisfies the conditions of Proposition 1.1 with a = 1 is f(u) = uq, q > pn−1. Assuming

for simplicity that dist(x(0), ∂Ω) = |x(0)| and choosing θi from the conditions

θ−1
i ρ

pn
pi

 pi
pn−pi = ρ−

pn
q−pn+1 ,

i.e. θi = ρ
pn
pi

q−pi+1
q−pn+1 , i ∈ I ′, from (1.9), (1.10) we obtain

u(x(0)) ≤ c

n
i=1
|x(0)
i |

pi
q−pi+1

−1

,

which was proved in [33].
Another example of the function f , which satisfies the conditions of Proposition 1.1 with a = 0, is

f(u) = eu. Assuming that 8ρ = dist(x(0), ∂Ω) and choosing θi from the conditions

θ−1
i ρ

pn
pi

 pi
pn−pi =

ln(1 + ρ−pn), i ∈ I ′, from (1.9), (1.10) we obtain

u(x(0)) ≤ c| ln dist(x(0), ∂Ω)|,

in the anisotropic case it seems that this estimate is new.
To prove the Harnack inequality we also need the following additional condition. We say that continuous

function Ψ satisfies the condition (B) if there exists µ > 0 such that

Ψ(εu) ≤ εµΨ(u), (B)

for all ε ∈ (0, 1), and for all u > 0.

Proposition 1.2. Let the condition (1.2) be fulfilled, 1 < p = p1 = p2 = · · · = pn < n and u be a nonnegative
weak solution to (1.1), and let Ψ(u) = u−1F

1
p (u) satisfy the condition (B). Let x(0) ∈ Ω and B8ρ(x(0)) ⊂ Ω ,

then there exists a positive number c7 depending only on n, ν1, ν2, p such that

F (u(x)) ≤ c7ρ
−pup(x), (1.12)

for almost all x ∈ Bρ(x(0)).

Remark 1.3. If f(u) = uqf1(u), where f1 is nondecreasing, continuous function and q > p − 1, then the
function Ψ(u) = u−1F

1
p (u) satisfies the condition (B) with µ = q−p+1

p > 0.

Remark 1.4. If f(u) = up−1f1(u), where f1 satisfies the condition (B) with some µ1 > 0, then the function
Ψ(u) = u−1F

1
p (u) satisfies the condition (B) with µ = µ1

p > 0. A simple example of the function f1,
which satisfies the condition (B) with µ1 = 1 is a function f1(u) =

 u
0
f1(s) ds, where f1 is nondecreasing,

continuous function.

We also note, that if f is as in Proposition 1.2, then u is uniformly bounded.
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The next main result of this paper is a priori estimate of the Keller–Osserman type for solutions of the
equation

ut − div A(x, t, u,∇u) + a0(u) = 0, (x, t) ∈ ΩT , (1.13)

where ΩT = Ω × (0, T ), 0 < T <∞.
We suppose that the functions A = (a1, . . . , an) and a0 satisfy the Caratheodory conditions and the

following structure conditions hold

A(x, t, u, ξ)ξ ≥ ν1

n
i=1
|u|(mi−1)(pi−1)|ξi|pi ,

|ai(x, t, u, ξ)| ≤ ν2u
(mi−1) pi−1

pi


n
j=1
|u|(mj−1)(pj−1)|ξj |pj

1− 1
pi

, i = 1, n, (1.14)

a0(u) ≥ ν1f(u),

with positive constants ν1, ν2 and continuous, positive function f(u) and

2 < p1 ≤ · · · ≤ pn, min
1≤i≤n

mi > 1, max
1≤i≤n

mi(pi − 1) ≤ 1 + κ

n
, p < n, (1.15)

where κ = n(p(m − d) − 1) + p, d = 1
n

n
i=1

mi
pi

, and assume without loss of generality, that mn =
max1≤i≤nmi.

We will write Vp,m(ΩT ) for the class of functions ϕ ∈ C(0, T, L2(Ω)) with
n
i=1


ΩT
|ϕ|(mi−1)(pi−1) |ϕxi |

pi

dxdt < ∞. We say that u is a weak solution to (1.13) if we have an inclusion u ∈ Vp,m(ΩT ) and for any
interval (t1, t2) ⊂ (0, T ) the integral identity

Ω

uϕdx

t2
t1

+
 t2
t1


Ω

{−uϕt +A(x, t, u,∇u)∇ϕ+ a0(u)ϕ} dx dt = 0 (1.16)

holds for any ϕ ∈
o

V p,m(ΩT ).

Remark 1.5. Condition (1.15) implies the local boundedness of weak solutions to Eq. (1.13) [13].

Let (x(0), t(0)) ∈ ΩT , for any τ, θ1, θ2, . . . , θn > 0, θ = (θ1, . . . , θn) we define Qθ,τ (x(0), t(0)) := {(x, t) :
|t− t(0)| < τ, |xi − x(0)

i | < θi, i = 1, n} and set M(θ, τ) := supQθ,τ (x(0),t(0)) u, δ(θ, τ) := supQθ,τ (x(0),t(0)) δ(u),
Φ(θ, τ) := supQθ,τ (x(0),t(0)) Φ(u), Φ(u) =

 u
0 g(s)ds, g(s) = smn−1f(s).

Theorem 1.2. Let the conditions (1.14), (1.15) be fulfilled and u be a nonnegative weak solution to
Eq. (1.13), assume also that f ∈ C1(R1

+) and f ′(u) ≥ 0. Let (x(0), t(0)) ∈ ΩT , fix σ ∈ (0, 1), τ ∈
(0,min(θpnn , t(0), T − t(0))), θi ∈ (0, θn) for i ∈ I ′ = {i = 1, n : mi(pi − 1) < mn(pn − 1)} and θi = θn
for i ∈ I ′′ = {i = 1, n : mi(pi− 1) = mn(pn− 1)}, then there exist positive numbers c8, c9 depending only on
n, ν1, ν2,m1, . . . ,mn, p1, . . . , pn such that either

u(x(0), t(0)) ≤ (τ−1ρpn)
1

mn(pn−1)−1 +

i∈I′


θ−1
i θ

pn
pi
n

 pi
mn(pn−1)−mi(pi−1)

, (1.17)

or

Φ(σθ, στ) ≤ c8(1− σ)−c9θ−pnn δ(θ, τ)Mmnpn−1(θ, τ). (1.18)

On the other hand, if I ′ is empty, i.e. m1(p1 − 1) = m2(p2 − 1) = · · · = mn(pn − 1), then either

u(x(0), t(0)) ≤ (τ−1θpnn )
1

mn(pn−1)−1 , (1.19)
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or (1.19) holds true.

Completely similar to Proposition 1.1 we obtain

Proposition 1.3. Let the conditions (1.14), (1.15) be fulfilled, u be a nonnegative weak solution to (1.13),
f ∈ C1(R1

+) and f ′(u) ≥ 0. Let ∂ΩT be the parabolic boundary of ΩT , assume also that lim(x,t)→∂ΩT u(x, t) =
+∞ and with some 0 ≤ a ≤ 1 and c > 0 there holds

δ(u) = F (u)
f(u) ≤ c u

a.

Let ψ(u) = u−1Φ
1

mnpn+a−1 (u) satisfy the condition (A). Let (x(0), t(0)) ∈ ΩT and 8ρ = dist(x(0), ∂Ω). Fix
τ ∈ (0,min(ρpn , t(0), T − t(0))) and θi ∈ (0, ρ) for i ∈ I ′, then there exists a positive number c10 depending
only on n, ν1, ν2,m1, . . . ,mn, p1, . . . , pn and c, such that either (1.18) holds, or

Φ(u(x(0), t(0))) ≤ c10θ
−pn
n umnpn+a−1(x(0), t(0)). (1.20)

On the other hand if I ′ is empty, i.e. m1(p1 − 1) = m2(p2 − 1) = · · · = mn(pn − 1) and ψ(u) =
u−1Φ

1
mnpn+a−1 (u) satisfies the condition (A), then either (1.19) holds, or (1.20) holds true.

A first main example of the function f , which satisfies the conditions of Proposition 1.3 with a = 1 is
f(u) = uq, q > mn(pn − 1). Assuming for simplicity that dist(x(0), ∂Ω) = |x(0)|, and choosing τ, θi, i ∈ I ′

from the conditions

τ−1ρpn

 1
mn(pn−1)−1 = ρ−

pn
q−mn(pn−1) , i.e. τ = ρ

pn(q−1)
q−mn(pn−1) ,


θ−1
i ρ

pn
pi

 pi
mn(pn−1)−mi(pi−1) =

ρ−
pn

q−mn(pn−1) , i.e. θi = ρ
pn
pi

q−mi(pi−1)
q−mn(pn−1) , from (1.17), (1.20) we obtain an estimate

u(x(0), t(0)) ≤ c

n
i=1
|x(0)
i |

pi
q−mi(pi−1) + (t(0))

1
q−1

−1

, (1.21)

in the case m1 = m2 = · · · = mn = 1 it was proved in [34].
Another example of the function f , which satisfies the conditions of Proposition 1.3 with a = 0, is

f(u) = eu. Assuming that (8ρ)pn = |x(0)|pn + t(0) and choosing τ, θi, i ∈ I ′ from the conditions
τ−1ρpn

 1
mn(pn−1)−1 =


θ−1
i ρ

pn
pi

 pi
mn(pn−1)−mi(pi−1) = ln(1 + ρ−pn),

from (1.17), (1.20) we obtain an estimate

u(x(0), t(0)) ≤ c| ln(|x(0)|pn + t(0))|,

in the anisotropic case it seems that this estimate is new.
Similar to Proposition 1.2 we get

Proposition 1.4. Let the conditions (1.14) be fulfilled, m1 = m2 = · · · = mn = 1, 2 < p = p1 = p2 = · · · = pn
and u be a nonnegative weak solution to (1.13), assume also that f ∈ C1(R1

+), f ′ ≥ 0 and let Ψ(u) =
u−1Φ

1
p (u) satisfy the condition (B). Let (x(0), t(0)) ∈ ΩT and Q8ρ,8τ (x(0), t(0)) ⊂ ΩT , then there exists a

positive constant c11 depending only on n, ν1, ν2, p such that either

u(x(0), t(0)) ≤ (τ−1ρp)
1
p−2 , (1.22)

or

Φ(u(x, t)) ≤ c11ρ
−pup(x, t), (1.23)

for almost all (x, t) ∈ Qρ,τ (x(0), t(0)).

Now we give a simple extension of the Keller–Osserman type estimates to the proof of Harnack type
inequality for nonnegative solutions of p-Laplace and evolution p-Laplace equations with absorption term.
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Harnack inequality is one of the most important results in the qualitative theory of elliptic and parabolic
equations. We refer to [2,3,23,24,32] for an account of these results. Generalized Harnack inequality was
proved in [10,9] for the equation of the type

−△u+ f(u) = 0,

f ≥ 0 nondecreasing function and it has the form sup
Bρ(x(0))

u

inf
Bρ(x(0))

u

ds

ρ

F (s) + s

≤ c, B8ρ(x(0)) ⊂ Ω (1.24)

with constant c independent of u.

Theorem 1.3. Let u be a nonnegative weak solution to Eq. (1.1), let the conditions (1.2) be fulfilled and
1 < p = p1 = p2 = · · · = pn < n, assume also that a0(u) ≤ ν2f(u), and let f is nondecreasing and
Ψ(u) = u−1F

1
p (u) satisfies the condition (B). Then there exists positive number c12 depending only on

ν1, ν2, n, p and independent of u such that

sup
Bρ(x(0))

u ≤ c12 inf
Bρ(x(0))

u, (1.25)

for all B8ρ(x(0)) ⊂ Ω .

Remark 1.6. Harnack inequality (1.25) implies the strong maximum principle, see [4,29,30,28,36].

Note also that Theorem 1.3 implies the existence of a radius ρ > 0 such that supBρ(x(0)) is uniformly
bounded by u(x(0)) and a constant which depends only on n, p, ν1, ν2.

Remark 1.7. If p = 2 by Proposition 1.2, we have

F ( sup
Bρ(x(0))

u) ≤ γρ−2( sup
Bρ(x(0))

u)2,

which implies for every 0 < s < supBρ(x(0)) u

Ψ(s) =

F (s)
s
≤ Ψ( sup

Bρ(x(0))
u) ≤ γρ−1,

and hence (1.24) yields (1.25).

Theorem 1.4. Let u be a nonnegative weak solution to Eq. (1.13) in ΩT , let the conditions (1.14) be fulfilled
and 2 < p1 = p2 = · · · = pn, m1 = m2 = · · · = mn = 1, assume also that, a0(u) ≤ ν2f(u), and let
f ∈ C1(R1

+), f ≥ 0 and Ψ(u) = u−1F
1
p (u) satisfy the condition (B). Then there exist positive constants

c13, c14 depending only on ν1, ν2, n, p and independent of u such that

u(x(0), t(0)) ≤ c13 inf
Bρ(x0)

u(x, t(0) + τ), τ = ρp


c14

u(x(0), t(0))

p−2
, (1.26)

for all Q8θ,8τ (x(0), t(0)) ⊂ ΩT .

Formulations of Theorems 1.3 and 1.4 are the same as in [2,3,23,24,32], however, due to the presence of
lower order term the results of [2,3,23,24,32] cannot be used. If f(u) = uq, q > p − 1, then the Harnack
inequality is a simple consequence of the Keller–Osserman estimate (see, for example [14,21]). The main
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novelty of our results is that the constants c12, c13, c14 are independent of u. The method that we are using
is a De Giorgi method. In the parabolic case we also use the well-known intrinsic scaling technique originally
introduced by Di Benedetto [2].

The rest of the paper contains the proof of the above theorems.

2. Keller–Osserman a priori sub-estimates for elliptic equations. Proof of Theorem 1.1 and Propositions 1.1
and 1.2

2.1. Auxiliary propositions

The following lemmas will be used in the sequel. The first one is the well-known embedding lemma
(see [19, chap. 2]).

Lemma 2.1. Let Ω ∈ Rn, n ≥ 2 be a bounded domain, u ∈
o

W 1,1(Ω), then the following inequality holds

∥u∥Lq(Ω) ≤ γ
n
i=1


Ω

|uxi |dx
 1
n

, q = n

n− 1 ,

where the positive constant γ depends only on n.

In what follows we will frequently use the following lemma [19, chap. 2].

Lemma 2.2. Let {yj}j∈N be a sequence of nonnegative numbers such that for any j = 0, 1, 2, . . . the inequality

yj+1 ≤ Cbjy1+ε
j

holds with positive ε, C > 0, b > 1. Then the following estimate is true

yj ≤ C
(1+ε)j−1

ε b
(1+ε)j−1
ε2 − jε y

(1+ε)j
0 .

Particularly, if y0 ≤ C−
1
ε b−

1
ε2 , then limj→∞ yj = 0.

2.2. Local energy estimates

The proof of sub-bounds stated in the previous section is based on local energy estimates. We provide
the proof of (1.6), assuming without loss that

1 < p1 ≤ p2 ≤ · · · ≤ pn−1 < pn ≤
np

n− p
, (2.1)

while the proof of (1.7) is completely similar. In what follows γ stands for a constant depending only on
n, ν1, ν2, p1, . . . , pn which may vary from line to line. If Qη(x) ⊂ Ω we let ζ denote a nonnegative piecewise
smooth cutoff function vanishing on the boundary of Qη(x).

Lemma 2.3. Let u be a nonnegative weak solution to Eq. (1.1) and let conditions (1.2), (2.1) hold. Then for
every Qη(x) ⊂ Ω and for every k > 0

n
i=1


Ak,η

f(u)|uxi |piζpndx+

Ak,η

(F (u)− k)+f(u)ζpndx

≤ γ
n
i=1


Ak,η

(F (u)− k)+δ
pi−1(u)|ζxi |pidx, (2.2)

where Ak,η = {x ∈ Qη(x) : F (u) > k}.
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Proof. Testing identity (1.3) by ϕ = (F (u)− k)+ζ
pn , using conditions (1.2) we obtain

n
i=1


Ak,η

f(u)|uxi |piζpndx+

Ak,η

(F (u)− k)+f(u)ζpndx

≤ γ
n
i=1


Ak,η


n
j=1
|uxj |pjf(u)ζpn

1− 1
pi

(F (u)− k)+f
1
pi
−1(u)|ζxi |ζ

pn
pi
−1
dx.

From this, using the Young inequality we arrive at the required (2.2). �

2.3. Proof of Theorem 1.1

Consider a cylinder Qθ(x(0)) and let x̄ be an arbitrary point in Qσθ(x(0)). If u(x(0)) ≥n−1
i=1


θ−1
i ρ

pn
pi

 pi
pn−pi , then N(θ) ≥


θ−1
i ρ

pn
pi

 pi
pn−pi for i = 1, n− 1, and hence Qη(x̄) ⊂ Qθ(x(0)), where

ηi = (1−σ)θ
pn
pi
n N

− pn−pipi (θ), i = 1, n. For fixed k > 0 and j = 0, 1, 2, . . . set ηi,j = 1
4ηi(1+2−j), i = 1, n, ηj =

(η1,j , η2,j , . . . , ηn,j), kj = k(1− 2−j), Qj = Qηj (x̄), Akj ,j = {x ∈ Qj(x̄) : F (u) > kj}. Let ζj ∈ C∞0 (Qj(x̄)),
0 ≤ ζj ≤ 1, ζj = 1 in Qj+1(x̄),

 ∂ζj∂xi  ≤ γ2jη−1
i , i = 1, n.

By Lemma 2.1 and the Hölder inequality we obtain
Akj+1,j+1

(F (u)− kj+1)+dx ≤


Akj+1,j


(F (u)− kj+1)+ζ

pn
j

 n
n−1 dx

n−1
n Akj+1,j+1

 1
n

≤ γ

n
i=1


Akj+1,j

 ∂∂xi (F (u)− kj+1)+ζ
pn
j

 dx
 1
n Akj+1,j

 1
n

≤ γ

n
i=1


Akj+1,j

f(u)|uxi |piζpndx
 1
npi

Akj+1,j

f(u)ζpnj dx

 pi−1
npi Akj+1,j

 1
n

+ γ

n
i=1


Akj+1,j

(F (u)− kj+1)+

∂ζj∂xi

 ζpn−1
j dx

 1
n Akj+1,j

 1
n .

From this by Lemma 2.3 and by the evident inequality (F (u)− kj)+ ≥ k
2j+1 on Akj+1,j , we obtain

yj+1 =

Akj+1,j

(F (u)− kj+1)+dx

≤ γ(1− σ)−γ2jγk− 1
n


|Qη(x̄)|−

1
n + k−

p−1
p θ−pnn

n
i=1

δpi−1(θ)Npn−pi(θ)

y

1+ 1
n

j .

It follows from Lemma 2.2 that yj → 0 as j →∞, provided k is chosen to satisfy

k = max

θ−pnn Npn(θ)
n
i=1


δ(θ)
N(θ)

(pi−1) p
p−1

, γ(1− σ)−γ |Qη(x̄)|−1

Q η

2
(x̄)
F (u)dx

 .

This implies that

F (u(x̄)) ≤ γ(1− σ)−γθ−pnn Npn(θ)
n
i=1


δ(θ)
N(θ)

(pi−1) p
p−1

dx

+ γ(1− σ)−γ |Qη(x̄)|−1

Q η

2
(x̄)
F (u)dx. (2.3)
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Let ξ ∈ C∞0 (Qη(x̄)), 0 ≤ ξ ≤ 1, ξ = 1 in Q η
2
(x̄),

 ∂ξ∂xi  ≤ γη−1
i , i = 1, n. To estimate the integral on the

right-hand side of (2.3) we test (1.3) by ϕ = ξpn , using conditions (1.2) and the Hölder inequality we obtain
Q η

2
(x̄)
F (u)dx ≤ δ(θ)


Qη(x̄)

f(u)ξpndx

≤ γδ(θ)
n
i=1


n
j=1


Qη(x̄)

|uxj |pjξpndx

1− 1
pi

Qη(x̄)

|ξxi |pidx

 1
pi

. (2.4)

Test (1.3) by ϕ = uξpn , using conditions (1.2) and the Young inequality we get
n
j=1


Qη(x̄)

|uxj |pjξpndx ≤ γ
n
j=1


Qη(x̄)

upj |ξxj |pjdx. (2.5)

Combining (2.4), (2.5) we arrive at
Q η

2
(x̄)
F (u)dx ≤ γ(1− σ)−γθ−pnn δ(θ)Npn−1(θ)|Qη(x̄)|. (2.6)

Since x̄ is an arbitrary point in Qση(x(o)), from (2.3), (2.6) we obtain the required (1.6), which proves
Theorem 1.1.

2.4. Proof of Proposition 1.1

First note an inequality which is an immediate consequence of our choice of ψ

ψ(u)v ≤ ε−1ψ(u)u+ ψ(εv)v, ε, u, v > 0, (2.7)

indeed if v ≤ ε−1u, then ψ(u)v ≤ ε−1ψ(u)u, and if v ≥ ε−1u, then ψ(u)v ≤ ψ(εv)v, and in both cases (2.7)
holds.

For j = 0, 1, 2 . . . define the sequences {σj}, {θj}, {Mj} by σj := 1−2−j−1

1−2−j−2 , θj := (θ1j , θ2j , . . . , θnj), θij =
θi

1 + 1

2 + · · ·+ 1
2j

, i = 1, n, Mj := supQ

θj(x(o))
u, if inequality (1.5) is violated, using (1.8) we write (1.6)

for the pair of boxes Qθj (x(o)) and Qθj+1(x(o)). This gives

Mjψ(Mj) ≤ γ2jγρ−
pn
b Mj+1.

If ε ∈ (0, 1), then by (2.7) from the previous inequality we obtain

ψ(Mj) ≤ ψ(εMj+1) + 1
ε

ψ(Mj)Mj
Mj+1

≤ ψ(εMj+1) + ε−1γ2jγρ−
pn
b .

Using the condition (A) we arrive at recursive inequalities

ψ(Mj) ≤ εµψ(Mj+1) + ε−1γ2jγρ−
pn
b , j = 0, 1, 2 . . . .

From this, by iteration

ψ(Mo) ≤ εjµψ(Mj) + ε−1γρ−
pn
b

j−1
i=0

εiµ2iγ ,

for every j ≥ 1.
We choose εµ = 2−γ−1 so that the sum on the right-hand side can be majorized by a convergent series

and let j →∞ to obtain

ψ(u(x(o))) ≤ ψ(Mo) ≤ γρ−
pn
b .

This proves Proposition 1.1. The proof of Proposition 1.2 is completely similar.
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3. Keller–Osserman a priori sub-estimates for parabolic equations. Proof of Theorem 1.2 and
Propositions 1.3 and 1.4

3.1. Local energy estimates

Let (x̄, t̄) ∈ ΩT , for any η1, . . . , ηn > 0, η = (η1, . . . , ηn) and s > 0 we define Qη,s(x̄, t̄) := Qη(x̄) × (t̄ −
s, t̄+ s), if Qη,s(x̄, t̄) ⊂ ΩT we let ζ denote a nonnegative piecewise smooth cutoff function vanishing on the
parabolic boundary of Qη,s(x̄, t̄). We provide the proof of (1.18), assuming without loss that

2 < p1 ≤ · · · ≤ pn−1 < pn, min
1≤i≤n

mi > 1, mn(pn − 1) ≤ 1 + κ

n
, p < n. (3.1)

In what follows γ stands for a constant depending only on n, ν1, ν2, p1, . . . , pn,m1, . . . ,mn which may
vary from line to line.

Lemma 3.1. Let u be a nonnegative weak solution to (1.13) and let the conditions (1.14), (3.1) hold. Then
for every cylinder Qη,s(x̄, t̄) ⊂ ΩT and for every k > 0

sup
|t−t̄|<s


Qη(x̄)

(Φ(u)− k)2
+ζ
pndx+

n
i=1


Ak,η,s

g2(u)u(mi−1)(pi−1)|uxi |piζpndxdt

+

Ak,η,s

f(u)g(u)(Φ(u)− k)+ζ
pndxdt ≤ γ


Ak,η,s

(Φ(u)− k)2
+|ζt|ζpn−1dxdt

+ γ

n
i=1


Ak,η,s

(Φ(u)− k)2
+δ
pi−2(u)u(mi−1)(pi−1)|ζxi |pidxdt, (3.2)

where Ak,η,s = {(x, t) ∈ Qη,s(x̄, t̄) : Φ(u) > k}.

Proof. Testing identity (1.16) by ϕ = (Φ(u)− k)+g(u)ζp, using conditions (1.14), we obtain

sup
|t−t̄|<s


Qη(x̄)

(Φ(u)− k)2
+ζ
pndx+


Ak,η,s

f(u)g(u)(Φ(u)− k)+ζ
pndxdt

+
n
i=1


Ak,η,s


g2(u) + g′(u)(Φ(u)− k)+


u(mi−1)(pi−1)|uxi |piζpndxdt

≤ γ

Ak,η,s

(Φ(u)− k)2
+|ζt|ζpn−1dxdt+ γ

n
i=1


Ak,η,s


n
j=1

g2(u)u(mj−1)(pj−1)|uxj |pjζpn
1− 1

pi

× g
2
pi
−1(u)u(mi−1) pi−1

pi (Φ(u)− k)+|ζxi |ζ
pn
pi
−1
dxdt.

From this, using the Young inequality and the evident inequality Φ(u)
g(u) ≤ δ(u) we arrive at the required

(3.2). �

3.2. Proof of Theorem 1.2

Consider a cylinder Qθ,τ (x(0), t(0)) and let (x̄, t̄) be an arbitrary point in Qσθ,στ (x(0), t(0)). If u(x(0), t(0)) ≥

(τ−1ρpn)
1

mn(pn−1)−1 +
n−1
i=1


θ−1
i ρ

pn
pi

 pi
mn(pn−1)−mi(pi−1)

, then M(θ, τ) = max(M(θ, τ), δ(θ, τ)) ≥

(τ−1ρpn)
1

mn(pn−1)−1 +
n−1
i=1


θ−1
i ρ

pn
pi

 pi
mn(pn−1)−mi(pi−1) , and hence Qη,s(x̄, t̄) ⊂ Qθ,τ (x(0), t(0)), where s =

(1 − σ)θpnn M1−mn(pn−1)(θ, τ), ηi = (1 − σ)θ
pn
pi
n Mmi(pi−1)−mn(pn−1)(θ, τ), i = 1, n. For fixed k > 0 and
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l, j = 0, 1, 2 . . . set αl = 1
4 (1 + 2−1 + · · · + 2l), ηi,j,l = (αl + 1

4 2−j−l−1)ηi, i = 1, n, ηj,l = (η1,j,l, . . . , ηn,j,l),
sj,l = (αl + 1

4 2−j−l−1)s, kj = k(1 − 2−j), Qj,l = Qηj,l,sj,l(x̄, t̄), Akj ,j,l = {(x, t) ∈ Qj,l : F (u) > kj}. Let
ζj ∈ C∞0 (Qj,l), 0 ≤ ζj ≤ 1, ζj = 1 in Qj+1,l,

 ∂ζj∂xi  ≤ γ2j+l−1ηi, i = 1, n,
∂ζj∂t  ≤ γ2j+ls−1.

By the Hölder inequality and Lemma 2.1 we obtain
Akj+1,j+1,l

(Φ(u)− kj+1)2
+dxdt ≤


Akj+1,j+1,l


(Φ(u)− kj+1)2

+ζ
pn
j

n+1
n dxdt

 n
n+1

|Akj+1,j+1,l|
1
n+1 ≤

≤ γ


sup

|t−t̄|<sj,l


Qηj,l(x̄)

(Φ(u)− kj+1)2
+ζ
pn
j dx

 1
n+1

×
n
i=1


Akj+1,j,l

(Φ(u)− kj+1)2
+ζ
pn
j


xi

 dxdt n
n+1

|Akj+1,j,l|
1
n+1 . (3.3)

Using the inequality Φ(u) − kj ≥ k
2j+1 on Akj+1,j,l,

Φ(u)
g(u) ≤ δ(u), we estimate the second term on the

right-hand side of (3.3) as follows
Akj+1,j,l

(Φ(u)− kj+1)2
+ζ
pn
j


xi

 dxdt ≤ γ 
Akj+1,j,l

g(u)(Φ(u)− kj+1)+|uxi |ζ
pn
j dxdt

+ γ


Akj+1,j,l

(Φ(u)− kj+1)2
+

∂ζj∂xi

 ζpn−1
j dxdt

≤ γ2jγk−
pi−1
pi


Akj+1,j,l

g2(u)u(mi−1)(pi−1)|uxi |piζ
pn
j dxdt

 1
pi

×


Akj+1,j,l


Φ(u)
g(u)

 pi
pi−1

g(u)umn−mif(u)(Φ(u)− kj)+ζ
pn
j dxdt

 pi−1
pi

+ γ


Akj,j,l

(Φ(u)− kj)2
+

∂ζj∂xi

 ζpn−1
j dxdt

≤ γ2jγk−
pi−1
pi δ(θ, τ)M

mn−mi
pi

(pi−1)(θ, τ)


Akj,j,l

g2(u)u(mi−1)(pi−1)|uxi |piζ
pn
j dxdt

 1
pi

×


Akj,j,l

g(u)f(u)(Φ(u)− kj)+ζ
pn
j dxdt

1− 1
pi

+ γ


Akj,j,l

(Φ(u)− kj)2
+

∂ζj∂xi

 dxdt. (3.4)

Choosing k from the condition

k ≥ θ−pnn δ(θ, τ)Mmnpn−1(θ, τ),

using Lemma 3.1, from (3.3), (3.4) we obtain

yj+1,l =

Akj+1,j+1,l

(Φ(u)− kj+1)2
+dxdt ≤ γ(1− σ)−γ2(j+l)γk−

2
n+1

Qη,s(x̄, t̄)− 1
n+1 y

1+ 1
n+1

j,l .

Let Ql = Qαlη,αls,Φl = supQl Φ(u), it follows from Lemma 2.2 that yj,l → 0 as j → ∞, provided k is
chosen to satisfy

k2 = γ(1− σ)−γ2γl
Qη,s(x̄, t̄)−1


Ql+1

Φ2(u)dxdt.
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If ε ∈ (0, 1), then from the previous we obtain

Φl ≤ γθ−pnn δ(θ, τ)Mmnpn−1(θ, τ)

+ γ(1− σ)−γ2γlδ 1
2 (θ, τ)M

mn−1
2 (θ, τ)Φ

1
2
l+1
Qη,s(x̄, t̄)− 1

2


Q η

2 ,
s
2

(x̄,t̄)
f(u)dxdt

 1
2

≤ εΦl+1 + γθ−pnn δ(θ, τ)Mmnpn−1(θ, τ)

+ γε−1(1− σ)−γ2γlδ(θ, τ)Mmn−1(θ, τ)
Qη,s(x̄, t̄)−1


Q η

2 ,
s
2

(x̄,t̄)
f(u)dxdt, l = 0, 1, 2 . . . .

From this by iteration

Φ(u(x̄, t̄)) ≤ Φ0 ≤ εlΦl + γε−1σ−γ
l−1
i=0

(ε2γ)i

×

θ−pnn δ(θ, τ)Mmnpn−1(θ, τ) + δ(θ, τ)Mmn−1(θ, τ)
Qη,s(x̄, t̄)−1


Q η

2 ,
s
2

(x̄,t̄)
f(u)dxdt

 ,

for every l ≥ 1.
Choosing ε = 2−γ−1 so that the sum on the right-hand side can be majorized by a convergent series and

l→∞ to obtain

Φ(u(x̄, t̄)) ≤ γ(1− σ)−γθ−pnn δ(θ, τ)Mmnpn−1(θ, τ)dxdt

+ γ(1− σ)−γδ(θ, τ)Mmn−1(θ, τ)
Qη,s(x̄, t̄)−1


Q η

2 ,
s
2

(x̄,t̄)
f(u)dxdt. (3.5)

Let ξ ∈ C∞0 (Qη,s(x̄, t̄)), 0 ≤ ξ ≤ 1, ξ = 1 in Q η
2 ,
s
2
(x̄, t̄),

 ∂ξ∂xi  ≤ γη−1
i , i = 1, n,

∂ξ∂t  ≤ γs−1. To estimate
the integral on the right-hand side of (3.5) we test (1.17) by ϕ = u

u+εξ
pn , using conditions (1.15) and the

Hölder inequality, and passing ε→ 0 we obtain
Qη,s(x̄,t̄)

f(u)ξpndxdt ≤ γ


Qη,s(x̄,t̄)

u|ξt|ξpn−1dxdt

+ γ

n
i=1


n
j=1


Qη,s(x̄,t̄)

|uxi |pjξpndxdt

1− 1
pi


Qη,s(x̄,t̄)
|ξxi |pidxdt

 1
pi

.

Testing (1.16) by ϕ = uξpn , using conditions (1.14) and the Young inequality we obtain
Qη,s(x̄,t̄)

f(u)ξpndxdt ≤ γM(θ, τ)|Qη(x̄)|. (3.6)

Combining (3.5), (3.6) we arrive at

Φ(u(x̄, t̄)) ≤ γσ−γθ−pnn δ(θ, τ)Mmnpn−1(θ, τ). (3.7)

Since (x̄, t̄) is an arbitrary point in Qσθ,στ (x(0), t(0)) from (3.7) the required (1.18) follows. This proves
Theorem 1.3. The proof of Propositions 1.3 and 1.4 is completely similar to that of Proposition 1.1

4. Harnack’s inequality for elliptic equations. Proof of Theorem 1.3

Let x(0) ∈ Ω and B8ρ(x(0)) ⊂ Ω , fix x̄ ∈ Bρ(x(0)), σ ∈ (0, 1) and 0 < r ≤ ρ, and let ζ ∈ C∞0 (Br(x̄)), 0 ≤
ζ ≤ 1, ζ = 1 in Bσρ(x̄), |∇ζ| ≤ (1− σ)−1r−1.
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Lemma 4.1. Let all the conditions of Theorem 1.3 be fulfilled. Then for every 0 < k < supB2ρ(x(0)) u next
inequalities hold 

Br(x̄)
|∇(u− k)+|pζpdx ≤ γ(1− σ)−pr−p∥(u− k)+∥pL∞(Br(x̄))|A

+
k,r|, (4.1)

Br(x̄)
|∇(k − u)+|pζpdx ≤ γ(1− σ)−pr−pkp|A−k,r|, (4.2)

where A±k,r = Br(x̄)

{(u− k)± > 0}.

Proof. Testing (1.3) by ϕ = (u − k)+ζ
p, using conditions (1.2) with p = p1 = · · · = pn and the Young

inequality we arrive at (4.1). To prove (4.2) we test identity (1.3) by ϕ = (k− u)+ζ
p, using conditions (1.2)

with p = p1 = · · · = pn and the Young inequality we obtain
Br(x̄)

|∇(k − u)+|pζpdx ≤ γ(1− σ)−pr−pkp|A−k,r|+ γ


Br(x̄)

f(u)(k − u)+ζ
pdx. (4.3)

Let us estimate the integral on the right hand side of (4.3), we have
Br(x̄)

f(u)(k − u)+ζ
pdx =


Br(x̄)

f(u)χ(u < k)
 k
u

ds ζp dx

≤

Br(x̄)

χ(u < k)
 k
u

f(s)ds ζpdx ≤
 k

0
f(s)ds |A−k,r| = F (k)|A−k,r|.

By Proposition 1.2 we get

F
1
p (k)
k
≤
F

1
p ( sup
B2ρ(x(0))

u)

sup
B2ρ(x(0))

u
≤ γρ−1 ≤ γr−1

with constant γ independent of u, hence (4.3) yields (4.2). This proves the lemma. �

Lemma 4.1 implies that the solution u of Eq. (1.1) with p = p1 = · · · = pn belongs to the corresponding
elliptic Bp-class (see [8,19]) and hence u satisfies the Harnack inequality (1.25), for the details we refer the
reader to [8].

5. Harnack’s inequality for parabolic equations. Proof of Theorem 1.4

Unfortunately, due to the presence of the absorption term we cannot use the results from [6], since the
Bp-classes considered in [6] are homogeneous. Hence, following the strategy [3], we give a sketch of the proof
of the Harnack inequality. Note that in the case considered here the constant C from the structure conditions
(1.2) in Chapter 3 of [3] is 0, and therefore, the first alternative Cρ > min(1, u(x(0), t(0))) from [3, Chapter 5,
Theorem 1.1] will never occur.

5.1. Local energy estimates

Let (x(0), t(0)) be an arbitrary point such that u(x(0), t(0)) > 0 and for r, η > 0 construct the cylinders

Qr,η(x̄, t̄) ⊂ Q2ρ,2θ(x(0), t(0)) ⊂ ΩT , θ = ρp


c14

u(x(0), t(0))

p−2
. (5.1)

Let ζ ∈ C∞0 (Qr,η(x̄, t̄)), 0 ≤ ζ ≤ 1, ζ = 1 in Qσr,ση(x̄, t̄), |∇ζ| ≤ (1− σ)−1r−1, |ζt| ≤ (1− σ)−1η−1.
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Lemma 5.1. Let all the conditions of Theorem 1.1 be fulfilled, then for every 0 < k < supQ2ρ,2τ (x(0),t(0)) u

sup
t̄−η<t<t̄+η


Br(x̄)

(u− k)2
+ζ
pdx+


Qr,η(x̄,t̄)

|∇(u− k)+|pζpdxdt

≤ γ(1− σ)−1η−1

Qr,η(x̄,t̄)

(u− k)2
+dxdt+ γ(1− σ)−pr−p


Qr,η(x̄,t̄)

(u− k)p+dxdt, (5.2)

sup
t̄−η<t<t̄+η


Br(x̄)

(k − u)2
+ζ
pdx+


Qr,η(x̄,t̄)

|∇(k − u)+|pζpdxdt

≤ γ(1− σ)−1 k2η−1 + kpη−p

|A−k,r,η|, (5.3)

where A−k,r,η = Qr,η(x̄, t̄)

{u < k}.

Proof. Testing (1.16) by ϕ = (u−k)+ζ
p, using conditions (1.14) with p = p1 = · · · = pn, m1 = · · · = mn = 1

and the Young inequality we arrive at (5.2). To prove (5.3) we test (1.16) by ϕ = (k−u)+ζ
p, using conditions

(1.14) with p = p1 = · · · = pn, m1 = · · · = mn = 1 and the Young inequality we obtain

sup
t̄−η<t<t̄+η


Br(x̄)

(k − u)2
+ζ
pdx+


Qr,η(x̄,t̄)

|∇(k − u)+|pζpdx

≤ γ(1− σ)−1η−1

Qr,η(x̄,t̄)

(k − u)2
+dxdt+ γ(1− σ)−pr−p


Qr,η(x̄,t̄)

(k − u)p+dxdt

+ γ


Qr,η(x̄,t̄)

f(u)(k − u)+ζ
pdxdt.

Using Proposition 1.4 with m1 = m2 = · · · = mn = 1, we estimate the integral on the right hand side of the
previous inequality as follows

Qr,η(x̄,t̄)
f(u)(k − u)+ζ

pdxdt ≤ γΦ(k)|A−k,r,η| ≤ γr
−pkp|A−k,r,η|.

This proves (5.3). �

5.2. A De Giorgi—type lemma

The following lemma is a consequence of Lemmas 5.1, 2.2 and the embedding theorem (see [3, Chapter 3,
Lemma 3.1]).

Lemma 5.2. Let the conditions of Theorem 1.4 be fulfilled. Let (x(0), t(0)) ∈ ΩT be such that u(x(0), t(0)) > 0,
fix θ as in (5.1), ξ, a ∈ (0, 1), 0 < ω < supQ2ρ,2θ(x(0),t(0)) u, θ−1 ≤ (ξω)p−2. There exists number ν− ∈ (0, 1)
depending only on ν1, ν2, k, p and a such that if(x, t) ∈ Q−r,rp(ξω)2−p(x̄, t̄) : u(x, t) ≤ ξω

 ≤ ν− Q−r,rp(ξω)2−p(x̄, t̄)
 , (5.4)

then

u(x, t) ≥ aξω for a.a. (x, t) ∈ Q−r
2 ,( r2 )p(ξω)2−p(x̄, t̄), (5.5)

for any Q−r,rp(ξω)2−p(x̄, t̄) = Br(x̄) ×

t̄− rp(ξω)2−p, t̄


⊂ Q2ρ,2θ(x(0), t(0)) ⊂ ΩT . Likewise, let M be some

number satisfying the inequality M ≥ supQ−
r,rp(ξω)2−p (x̄,t̄) u, then there exists number ν+ ∈ (0, 1) depending

only on ν1, ν2, n, p, a,M and ω such that if(x, t) ∈ Q−r,rp(ξω)2−p(x̄, t̄) : u(x, t) ≥M(1− ξ)
 ≤ ν+

Q−r,rp(ξω)2−p(x̄, t̄)
 , (5.6)
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then

u(x, t) ≤M(1− aξ) for a.a. (x, t) ∈ Q−r
2 ,( r2 )p(ξω)2−p(x̄, t̄), (5.7)

for any Q−r,rp(ξω)2−p(x̄, t̄) ⊂ Q2ρ,2θ(x(0), t(0)) ⊂ ΩT .

5.3. Expansion of positivity

The following lemma is an expansion of positivity result, analogue in formulation as well as in the proof
to [3, Chapter 4, Proposition 4.1]. For (x̄, t̄) ∈ ΩT and some given 0 < N < supQ2ρ,2θ(x(0),t(0)) u consider the
cylinder

B4r(x̄)×

t̄, t̄+ bp−2

(εN)p−2 δ(4r)
p


⊂ Q2ρ,2θ(x(0), t(0)) ⊂ ΩT ,

where b, ε, δ are the positive constants given by Lemma 5.3.

Lemma 5.3. Let the conditions of Theorem 1.4 be fulfilled. Assume that for some (x̄, t̄) ∈ ΩT , some r > 0
and some α ∈ (0, 1) x ∈ Br(x̄) : u(x, t̄) < N

 ≤ (1− α)|Br(x̄)|. (5.8)

Then there exist constants ε, δ ∈ (0, 1) and b > 1 depending only on ν1, ν2, p, n and α such that

u(x, t) ≥ εN for a.a. x ∈ B2r(x̄), (5.9)

and for all times

t̄+ 1
2

bp−2

(εN)p−2 δr
p ≤ t ≤ t̄+ bp−2

(εN)p−2 δr
p (5.10)

where A±k,r,η = Qr,η(x̄, t̄)

{(u− k)± > 0}.

Proof. By (5.8), using (5.3) similar to [3, Chapter 4, Lemma 4.1] we obtain that for every τ > 0x ∈ Br(x̄) : u(x, t̄+ eτN2−pδrp) ≤ ε1e
− τ
p−2N

 ≤ 1− α

2


|Br(x̄)|, (5.11)

with some ε1, δ ∈ (0, 1) depending only on ν1, ν2, p, n and α.

In the same way as in [3, Chapter 2, Proposition 4.1] we consider the function

w(x, τ) = e
τ
p−2N−1(δrp)

1
p−2u(x, t̄+ eτN2−pδrp), τ > 0.

Set k0 = ε1(δrp)
1
p−2 , inequality (5.11) translates into w as

|{x ∈ Br(x̄) : w(x, τ) ≤ k0}| ≤


1− α

2


|Br(x̄)|, (5.12)

for every τ > 0.

Since w ≥ 0, formal differentiation, which can be justified in a standard way, gives

wτ = 1
p− 2w +


e
τ
p−2N−1(δrp)

1
p−2

p−1
ut

= 1
p− 2w + div A(x, τ, w,∇w)− a0(w), (5.13)
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where A,a0 satisfy the conditions

A(x, τ, w,∇w)∇w ≥ ν1

n
i=1
|wxi |p,

|ai(x, τ, w,∇w)| ≤ ν2


n
i=1
|wxi |p

1− 1
p

, 1 = 1, n,

ν1 f(w) ≤ a0(w) ≤ ν2 f(w),

(5.14)

where f(w) =

e
τ
p−2N−1(δrp)

1
p−2

p−1
f

we−

τ
p−2N(δrp)−

1
p−2


.

Let ks = k02−s, s = 0, 1, . . . , s∗, where s∗ is a sufficiently large positive number, depending only on
n, p, ν1, ν2, satisfying the condition e2s∗(p−2) ≤ c14. By our choices and by Proposition 1.4 we have

F (ks) =
 ks

0
f(l)dl =


e
τ
p−2N−1(δrp)

1
p−2

p
F

kse
− τ
p−2N(δrp)−

1
p−2


≤ γkpsr

−p,

for x ∈ B4r(x̄) and for all 0 < τ ≤ ln c14.

Hence, the energy estimates (5.3) for the function (ks − w)+ over the cylinders Q+
4r,η∗(x̄, 0) = B4r(x̄) ×

(0, η∗), η∗ = k2−p
s∗ rp, can be written in the form

sup
0<τ<η∗


B4r(x̄)

(ks − w)2
+ζ
pdx+


Q+

4r,η∗ (x̄,0)
|∇(ks − w)+|pζpdxdτ ≤ γkpsr−p|A−ks,4r,η∗ |,

where A−ks,4r,η∗ = Q+
4r,η∗(x̄, 0)


{w < κs} and ζ ∈ C∞0 (Q+

4r,η∗(x̄, 0)), 0 ≤ ζ ≤ 1, ζ = 1 in B2r(x̄) ×
η∗
4 ,
η∗
2

, |∇ζ| ≤ γr−1, |ζτ | ≤ γη−1

∗ .

The rest of the proof of Lemma 5.3 is the same as in [3] (see [3, Chapter 4, Proposition 4.1] for details). �

After we have proved Lemmas 5.2 and 5.3 the rest of the arguments do not differ from [3] (see [3,
Chapter 5, Theorem 1.1] for details). This completes the proof of Theorem 1.4.

Acknowledgments

This work is supported by grant of Ministry of Education and Science of Ukraine (project number is
0115 U 000 136). Publication is based on the research provided by the grant support of the State Fund For
Fundamental Research (project number is 0116U007160).

We thank the referees for the careful reading of the preliminary version of the paper and the suggestions
for an improved presentation.

References

[1] F.C. Cirstea, J. Vetois, Fundamental solutions for anisotropic elliptic equations: existence and a priori estimates, Comm.
Partial Differential Equations 40 (4) (2015) 727–767.

[2] E. Di Benedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
[3] E. Di Benedetto, U. Gianazza, V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations, Springer

Monographs in Mathematics, New York - London, 2012.
[4] P. Felmer, M. Montenegro, A. Quaas, A note on the strong maximum principle and the compact support principle,

J. Differential Equations 246 (2009) 39–49.
[5] J. Garcia-Melian, J.D. Rossi, J.C. Sabina de Lis, Large solutions to an anisotropic quasilinear elliptic problem, Ann. Mat.

Pura Appl. 189 (2010) 689–712.
[6] U. Gianazza, V. Vespri, Parabolic De Giorgi classes of order p and the Harnack inequality, Calc. Var. Partial Differential

Equations 26 (2006) 379–399.

http://refhub.elsevier.com/S0362-546X(17)30017-2/sbref1
http://refhub.elsevier.com/S0362-546X(17)30017-2/sbref2
http://refhub.elsevier.com/S0362-546X(17)30017-2/sbref4
http://refhub.elsevier.com/S0362-546X(17)30017-2/sbref5
http://refhub.elsevier.com/S0362-546X(17)30017-2/sbref6


114 M.A. Shan, I.I. Skrypnik / Nonlinear Analysis 155 (2017) 97–114

[7] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987) 245–248.
[8] E. Giusti, Metodi Diretti Nel Calcolo Delle Variazioni, Unione Matematica Italiana, Bologna, 1994.
[9] V. Julin, Generalized Harnack inequality for nonhomogeneous elliptic equations, Arch. Ration. Mech. Anal. 216 (2015)

673–702.
[10] V. Julin, Generalized Harnack inequality for semilinear elliptic equations, J. Math. Pures Appl. 106 (5) (2016) 877–904.
[11] J.B. Keller, On solutions of △u = f(u), Comm. Pure Appl. Math. 10 (1957) 503–510.
[12] I.M. Kolodij, On boundedness of generalized solutions of elliptic differential equations, Vestn. Mosk. Gos. Univ. 5 (1970)

44–52.
[13] I.M. Kolodij, On boundedness of generalized solutions of parabolic differential equations, Vestn Mosk. Gos. Univ. 5 (1971)

25–31.
[14] V.A. Kondrat’ev, E.M. Landis, On qualitative properties of solutions of a nonlinear equation of second order, Mat. Sb. 3

(1988) 346–360.
[15] A.A. Kon’kov, Comparison theorems for elliptic inequalities with a non-linearity in the principal part, J. Math. Anal. Appl.

325 (2007) 1013–1041.
[16] A.A. Kon’kov, On comparison theorems for elliptic inequalities, J. Math. Anal. Appl. 388 (2012) 102–124.
[17] A.A. Kon’kov, On solutions of quasilinear elliptic inequalities containing terms with lower order derivatives, Nonlinear

Anal. 90 (2013) 121–134.
[18] A.A. Kovalevsky, I.I. Skrypnik, A.E. Shishkov, Singular Solutions of Nonlinear Elliptic and Pàrabolic Equations, in: Series
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